首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Phthalates have been used for decades in large quantities, leading to the ubiquitous exposure of the population.In an investigation of 63 German daycare centers, indoor air and dust samples were analyzed for the presence of 10 phthalate diesters. Moreover, 10 primary and secondary phthalate metabolites were quantified in urine samples from 663 children attending these facilities. In addition, the urine specimens of 150 children were collected after the weekend and before they went to daycare centers.Di-isobutyl phthalate (DiBP), dibutyl phthalate (DnBP), and di-2-ethylhexyl phthalate (DEHP) were found in the indoor air, with median values of 468, 227, and 194 ng/m3, respectively. In the dust, median values of 888 mg/kg for DEHP and 302 mg/kg for di-isononyl phthalate (DiNP) were observed. DnBP and DiBP were together responsible for 55% of the total phthalate concentration in the indoor air, whereas DEHP and DiNP were responsible for 70% and 24% of the total phthalate concentration in the dust.Median concentrations in the urine specimens were 44.7 μg/l for the DiBP monoester, 32.4 μg/l for the DnBP monoester, and 16.5 μg/l and 17.9 μg/l for the two secondary DEHP metabolites. For some phthalates, we observed significant correlations between their concentrations in the indoor air and dust and their corresponding metabolites in the urine specimens using bivariate analyses. In multivariate analyses, the concentrations in dust were not associated with urinary metabolite excretion after controlling for the concentrations in the indoor air.The total daily “high” intake levels based on the 95th percentiles calculated from the biomonitoring data were 14.1 μg/kg b.w. for DiNP and 11.9 μg/kg b.w. for DEHP. Compared with tolerable daily intake (TDI) values, our “high” intake was 62% of the TDI value for DiBP, 49% for DnBP, 24% for DEHP, and 9% for DiNP. For DiBP, the total daily intake exceeded the TDI value for 2.4% of the individuals. Using a cumulative risk-assessment approach for the sum of DEHP, DnBP, and DiBP, 20% of the children had concentrations exceeding the hazard index of one. Therefore, a further reduction of the phthalate exposure of children is needed.  相似文献   

2.
Phthalates are ubiquitous environmental chemicals with potential detrimental health effects. The purpose of our study was to quantify dietary intake of phthalates and of DEHA (Di-ethylhexyl adipate) using duplicate diet samples and to compare these data with the calculated data based on urinary levels of primary and secondary phthalate metabolites. 27 female and 23 male healthy subjects aged 14-60 years collected daily duplicate diet samples over 7 consecutive days. Overall, 11 phthalates were measured in the duplicates by GC/MS and LC/MS methods. Urinary levels of primary and secondary phthalate metabolites are also available. The median (95th percentile) daily intake via food was 2.4 (4.0) microg/kg b.w. (Di-2-ethylhexyl phthalate, DEHP), 0.3 (1.4) microg/kg b.w. (Di-n-butyl phthalate, DnBP), 0.6 (2.1) microg/kg b.w. (Di-isobutyl phthalate, DiBP) and 0.7 (2.2) microg/kg b.w. for DEHA. MEPH (Mono-2-ethylhexyl phthalate) was detectable only in minor concentrations in the samples, thus conversion of DEHP to MEHP and dietary intake of MEHP were negligible. When comparing back-calculated intake data of the DEHP metabolites with dietary DEHP intake from the day before significant correlations were observed for most of the metabolites. No correlation was found for DnBP and only a weak but significant correlation for DiBP. The median and 95th percentile daily dietary intake of all target analytes did not exceed the recommended tolerable daily intake. Our data indicated that food was the predominant intake source of DEHP, whilst other sources considerably contributed to the daily intake of DnBP and DiBP in an adult population.  相似文献   

3.
This survey determined the levels of eight phthalates – i.e. dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), benzylbutyl phthalate (BzBP), di(2-ethylhexyl) phthalate (DEHP), dicyclohexyl phthalate (DCHP) and di-n-octyl phthalate (DnOP) – in several Belgian milk and dairy products. Samples were obtained from various farms, a dairy factory and from different shops in order to investigate phthalate contamination “from farm to fork”. At several stages in the milk chain, product contamination with phthalates – mostly DiBP, DnBP, BzBP and DEHP – was observed. At farm level, the mechanical milking process and the intake of phthalate containing feed by the cattle were found to be possible contamination sources. At industry and retail level, contact materials including packaging materials were additional contamination sources for phthalates in milk and dairy products.  相似文献   

4.
BackgroundPhthalates, reproductive toxicants in animals, are synthetic chemicals with ubiquitous human exposures because of their extensive use, with potential detrimental health effects. Infants are considered to represent a population at increased risk, as they are exposed early in life to several different sources of exposure to phthalates.Objectives and methodsLittle information exists on phthalate exposure through breast milk from different geographic areas. By means of a LC/LC–MS/MS method we tested the presence of several different phthalate metabolites in breast milk from 62 healthy mothers living in Southern Italy.ResultsThe simple monoesters mono-isobutyl phthalate (MiBP) (median 18.8 μg/l) and mono(2-ethylhexyl) phthalate (MEHP) (median 8.4 μg/l) were present in all milk samples, whereas mono-n-butyl phthalate (MnBP) (median 1.5 μg/l) and mono-benzyl phthalate (MBzP) (median < 0.3 μg/l) were found in 64.5% and 43.5% of the samples, respectively. Among the oxidative metabolites of DEHP and DiNP only mono(2-ethyl-5-carboxypentyl) phthalate (5cx-MEPP) and monoisononyl phthalate with one hydroxyl group (OH-MiNP) were detectable in one and 13 samples (21%), respectively.ConclusionsThese findings indicate that exposure to phthalates through breast milk in Southern Italian infants is comparable to that of other countries, thus confirming that human milk may represent an additional potential source of phthalate exposure in a population at increased risk. However, different milk concentrations of MiBP may suggest a different pattern of usage of di-iso-butyl phthalate in Europe, as compared to USA, whereas for the first time, we detected an oxidative DiNP metabolite, whose significance remains unclear.  相似文献   

5.
Numerous studies have indicated that for phthalates, the intake of contaminated foods is the most important exposure pathway for the general population. Up to now, data on dietary phthalate intake are scarce and – to the authors' knowledge – not available for the Belgian population. Therefore, the purpose of this study was: (1) to assess the long-term intake of the Belgian population for eight phthalates considering different exposure scenarios (benzylbutyl phthalate (BBP); di-n-butyl phthalate (DnBP); dicyclohexyl phthalate (DCHP); di(2-ethylhexyl) phthalate (DEHP); diethyl phthalate (DEP); diisobutyl phthalate (DiBP); dimethyl phthalate (DMP), di-n-octyl phthalate (DnOP)); (2) to evaluate the intake of BBP, DnBP, DEP and DEHP against tolerable daily intake (TDI) values; and (3) to assess the contribution of the different food groups to the phthalate intake. The intake assessment was performed using two Belgian food consumption databases, one with consumption data of preschool children (2.5 to 6.5 years old) and another of adults (≥ 15 years old), combined with a database of phthalate concentrations measured in over 550 food products sold on the Belgian market. Phthalate intake was calculated using the ‘Monte Carlo Risk Assessment’ programme (MCRA 7.0). The intake of DEHP was the highest, followed by DiBP. The intake of BBP, DnBP and DEP was far below the TDI for both children and adults. However, for DEHP, the 99th percentile of the intake distribution of preschoolers in the worst case exposure scenario was equal to 80% of the TDI, respectively. This is not negligible, since other exposure routes of DEHP exist for children as well (e.g. mouthing of toys). Bread was the most important contributor to the DEHP intake and this may deserve further exploration, since the origin of this phthalate in bread remains unclear.  相似文献   

6.
PurposeThe purpose of this paper is to review exposure assessment issues that need to be addressed in designing and interpreting epidemiology studies of phthalates, a class of chemicals commonly used in consumer and personal care products. Specific issues include population trends in exposure, temporal reliability of a urinary metabolite measurement, and how well a single urine sample may represent longer-term exposure. The focus of this review is on seven specific phthalates: diethyl phthalate (DEP); di-n-butyl phthalate (DBP); diisobutyl phthalate (DiBP); butyl benzyl phthalate (BBzP); di(2-ethylhexyl) phthalate (DEHP); diisononyl phthalate (DiNP); and diisodecyl phthalate (DiDP).MethodsComprehensive literature search using multiple search strategies.ResultsSince 2001, declines in population exposure to DEP, BBzP, DBP, and DEHP have been reported in the United States and Germany, but DEHP exposure has increased in China. Although the half-lives of various phthalate metabolites are relatively short (3 to 18 h), the intraclass correlation coefficients (ICCs) for phthalate metabolites, based on spot and first morning urine samples collected over a week to several months, range from weak to moderate, with a tendency toward higher ICCs (greater temporal stability) for metabolites of the shorter-chained (DEP, DBP, DiBP and BBzP, ICCs generally 0.3 to 0.6) compared with those of the longer-chained (DEHP, DiNP, DiDP, ICCs generally 0.1 to 0.3) phthalates. Additional research on optimal approaches to addressing the issue of urine dilution in studies of associations between biomarkers and different type of health effects is needed.ConclusionsIn conclusion, the measurement of urinary metabolite concentrations in urine could serve as a valuable approach to estimating exposure to phthalates in environmental epidemiology studies. Careful consideration of the strengths and limitations of this approach when interpreting study results is required.  相似文献   

7.
Phthalates are esters of phthalic acid and are mainly used as plasticizers (added to plastics to increase their flexibility, transparency, durability, and longevity). Humans are exposed to phthalates through several routes. Urinary phthalate metabolites can be used as biomarkers of human exposures to phthalates. In this study, 14 phthalate metabolites were analyzed in 183 urine samples collected in 2010 from Shanghai, Guangzhou, and Qiqihaer, China. Phthalate metabolites were found in all urine samples and their total concentrations ranged from 18.6 to 3160 ng/mL (median: 331 ng/mL). Mono-n-butyl phthalate (mBP) and mono-2-isobutyl phthalate (miBP) were the major metabolites found in urine, and their respective median concentrations were 61.2 and 51.7 ng/mL; concentrations of miBP were higher than the concentrations reported for other countries, to date. Based on the urinary concentrations of phthalate metabolites, we estimated the daily intake rates in the Chinese population. The estimated daily intakes of dibutyl phthalate (DBP), diethyl phthalate (DEP), and di-(2-ethylhexyl) phthalate (DEHP) in China were 12.2, 3.8, and ~5 μg/kg bw/day, respectively. Thirty nine percent of the samples exceeded the tolerable daily intake of 10 μg/kg bw/day, proposed for DBP, by the European Food Safety Authority, but none of the estimated daily intake values exceeded the reference dose recommended by the U.S. Environmental Protection Agency.  相似文献   

8.
In a published controlled dosing experiment, a single individual consumed 5 mg each of labeled di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP) on separate occasions and tracked metabolites in his blood and urine over 48 h. Data from this study were used to structure and calibrate simple pharmacokinetic (PK) models for these two phthalates, which predict urine and blood metabolite concentrations with a given phthalate intake scenario (times and quantities). The calibrated models were applied to a second published experiment in which 5 individuals fasted over the course of a 48-h weekend (bottled water only), and their full urine voids were captured and measured for DnBP and DiBP metabolites. One goal of this model application was to confirm the validity of the calibrated models — their validity would be demonstrated if a profile of intakes could be found which adequately duplicated the metabolite concentrations measured in the urine. A second goal was to study patterns of exposure for this group. It was found that all metabolites could be duplicated very well with individual-specific “best-fit” intake scenarios, with one exception. It appears that the model predicted much lower concentrations of the metabolite, 3carboxy-mono-propylphthalate (MCPP), than were observed in all individuals. Modeled as a metabolite of DnBP, this suggests that DnBP was not the major source of MCPP in the urine. For all 5 individuals, the reconstructed dose profiles of the two phthalates were similar: about 6 small bolus doses per day and an intake of about 0.5 μg/kg-day. The intakes did not appear to be associated with diary-reported activities (personal hygiene and medication) of the participants. The modeled frequent intakes suggested one (or both) of two possibilities: ongoing exposures such as an inhalation exposure, or no exposure but rather an ongoing release of body stores of the phthalate metabolites from past exposures.  相似文献   

9.
Zeng F  Cui K  Xie Z  Liu M  Li Y  Lin Y  Zeng Z  Li F 《Environment international》2008,34(3):372-380
Extensive use of phthalate esters (PAEs) in both industrial processes and consumer products has resulted in the ubiquitous presence of these chemicals in the environment. This study reports the first data on the concentrations of 16 phthalate esters (PAEs) in water and sediments of the urban lakes in Guangzhou City. PAEs were detected in all samples analyzed, mainly originating from urban stormwater runoff, atmospheric deposition, as well as untreated discharge of industrial wastewater and municipal sewage. The Sigma(16)PAEs concentrations in water and sediments ranged from 1.69 to 4.72 microg L(-1) and 2.27 to 74.94 microg g(-1)-dry weight (dw), with the mean concentrations of 2.91 microg L(-1) and 20.85 microg g(-1)-dw, respectively, which indicates that sediment is a significant sink for PAEs. Variability of the Sigma 16PAEs concentrations in water and sediment in the urban lakes was almost consistent. The spatial distribution of PAEs was site-specific. Of the 16 PAEs, DMP, DEP, DnBP, DiBP, DMPP, and DEHP were present in all water and sediment samples. DnBP was abundant in water (53.0-81.2%), while no single dominant congener was found in sediments. The abundances of DiBP were similar to those of DEHP, and DiBP and DEHP collectively accounted for 77.2-97.6% of the Sigma 16PAEs concentrations. Congener specific analysis confirmed that DnBP was a predictive indicator for the dissolved summation operator16 PAEs concentration (correlation coefficient r=0.968, p<0.01), and that DiBP was a predictive indicator for the sediment summation operator16 PAEs concentration (r=0.975, p<0.01). As compared to the results for other studies, the urban lakes of Guangzhou were moderately polluted by PAEs.  相似文献   

10.
Sources of phthalates other than Polyvinyl chloride (PVC) related products are scarcely documented in Mexico. The objective of our study was to explore the association between urinary levels of nine phthalate metabolites and the use of personal care products. Subjects included 108 women who participated as controls in an ongoing population-based case-control study of environmental factors and genetic susceptibility to breast cancer in northern Mexico. Direct interviews were performed to inquire about sociodemographic characteristics, reproductive history, use of personal care products, and diet. Phthalate metabolites measured in urine by high performance liquid chromatography-isotope dilution tandem mass spectrometry were monoethyl phthalate (MEP), monobenzyl phthalate (MBzP), mono-n-butyl phthalate (MBP), mono-isobutyl phthalate (MiBP), mono-3-carboxypropyl phthalate (MCPP) as well as mono-2-ethylhexyl phthalate (MEHP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-2-ethyl-5-carboxypentyl phthalate (MECPP) that are metabolites of di-ethylhexyl phthalate (DEHP). Detectable urinary concentrations of phthalate metabolites varied from 75% (MEHP) to 100% (MEP, MBP, MEOHP, MEHHP and MECPP). Medians of urinary concentrations of some phthalate metabolites were significantly higher among users of the following personal care products compared to nonusers: body lotion (MEHHP, MECPP and sum of DEHP metabolites (ΣDEHP)), deodorant (MEHP and ΣDEHP), perfume (MiBP), anti-aging facial cream (MEP, MBP and MCPP) and bottled water (MCPP, MEHHP and MEOHP). Urinary concentrations of MEP showed a positive relationship with the number of personal care products used. Our results suggest that the use of some personal care products contributes to phthalate body burden that deserves attention due to its potential health impact.  相似文献   

11.
Phthalates are widely used in industry and consumer products. Di-(2-ethylhexyl) phthalate (DEHP) and di-n-butylphthalate (DBP) show the greatest potency of reproductive toxicants among phthalates. The purposes of this study are to examine the migration level of phthalate from PVC films by simulating food handling and to reveal the body burden of phthalate for Taiwanese. In order to estimate a worst-case of phthalate migration, food was covered with polyvinyl chloride (PVC) films and then microwave heated. Results show that DEHP level in food increased significantly after heating for 3 min. Under the heating condition, the calculated intake of phthalate and the percentage of the tolerable daily intake (TDI, based on body weight of 60 kg) from eating one 400-g meal were 1705.6 microg and 92.2% for DEHP. Determination of urinary metabolites from 60 subjects reveals more than 90% of samples were detectable for mono-methyl phthalate (MMP), mono-butyl phthalate (MBP) and mono-ethylhexyl phthalate (MEHP). Notably, the median value of estimated daily intake of DEHP had reached 91.6% of TDI established by the European Union Scientific Committee for Toxicity, Ecotoxicity and the Environment (CSTEE) (1998). Thirty-seven percent of the study population exceeded the TDI and 85% exceeded the reference dose (RfD) of the US EPA. We conclude that the body burden of DEHP for Taiwanese reflects the intensives use of plastic materials in the region. The regulation of PVC for food preparation is necessary.  相似文献   

12.
Very low birth weight infants (VLBW; birth weight < 1500 g) are exposed to potentially harmful phthalates from medical devices during their hospital stay. We measured urinary phthalate concentrations among hospitalized VLBW infants participating in a nutritional study. Possible associations between different phthalates and birth weight (BW), septicemia and bronchopulmonary dysplasia (BPD) were evaluated. Forty-six VLBW infants were enrolled in this randomized controlled nutritional study. The intervention group (n = 24) received increased quantities of energy, protein, fat, essential fatty acids and vitamin A, as compared to the control group (n = 22). The concentrations of 12 urinary phthalate metabolites were measured, using high-performance liquid chromatography coupled to tandem mass spectrometry, at 3 time points during the first 5 weeks of life. During this study, the levels of di (2-ethylhexyl) phthalate (DEHP) metabolites decreased, whereas an increasing trend was seen regarding metabolites of di-iso-nonyl phthalate (DiNP). Significantly higher levels of phthalate metabolites were seen in infants with lower BW and those diagnosed with late onset septicemia or BPD. A significant positive correlation between the duration of respiratory support and DEHP metabolites was observed (p  0.01) at 2.9 weeks of age. Birth weight was negatively associated with urinary phthalate metabolite concentrations. Infants with lower BW and those diagnosed with septicemia or BPD experienced prolonged exposure from medical equipment containing phthalates, with subsequent higher levels of phthalate metabolites detected. Clinical Trial Registration no.: NCT01103219.  相似文献   

13.
Studies of the effects on pregnancy outcomes of in utero exposure to phthalates, contaminants that are widely present in the environment, have yielded conflicting results. In addition, the mode of assessment of exposure varies between studies. The aim of this review was therefore to establish a current state of knowledge of the phthalates and metabolites involved in unfavorable pregnancy outcomes. Extant data were analyzed to determine which biomarker is the best suited to assess the relation between in utero exposure to phthalates and pregnancy outcomes.This review of the literature was conducted using the database of PubMed. A search was made of studies investigating exposure to phthalates and the following birth outcomes: preterm birth (gestational age < 37 weeks), change in gestational age, change in body size at birth (birth weight, length, head circumference), anti-androgenic function, decreased anogenital distance, cryptorchidism, hypospadias and congenital malformation. The methodological approach adopted in each study was examined, in particular the methods used for exposure assessment (biomarkers and/or questionnaire).Thirty-five studies were included. Premature birth and decreased anogenital distance were the most commonly reported outcomes resulting from a moderate level of exposure to phthalates. The principal metabolites detected and involved were primary metabolites of di-2(ethylhexyl)-phthalate (DEHP) and di-n-butyl-phthalate (DnBP). No clear conclusion could be drawn with regard to gestational age at birth, body size at birth and congenital malformations. In epidemiological studies, maternal urine is the most suitable matrix to assess the association between in utero exposure to phthalates and pregnancy outcomes: in contrast to other matrices (cord blood, amniotic fluid, meconium and milk), sampling is easy, non-invasive and, can be repeated to assess exposure throughout pregnancy. Oxidative metabolites are the most relevant biomarkers since they are not prone to external contamination.Further epidemiological studies are required during pregnancy to i) determine the role of phthalates other than DEHP [currently replaced by various substitution products, in particular diisononyl-phthalate (DiNP)]; ii) establish the effect of phthalates on other outcomes (body size adjusted for gestational age, and congenital malformations); iii) determine the pathophysiological pathways; and iv) identify the most suitable time for biomarker determination of in utero exposure to phthalates.  相似文献   

14.
The use of human biomonitoring data to characterize exposure to environmental contaminants in epidemiology studies has expanded greatly in recent years. Substantial variability in effect measures may arise when using different exposure metrics for a given contaminant, and it is often not clear which metric is the best surrogate for the ‘causal’ or ‘true’ exposure. Here we evaluated variability and potential bias in epidemiologic associations resulting from the use of different phthalate exposure metrics in the 2009–2010 National Health and Nutrition Examination Survey (NHANES). We examined associations between urinary phthalate metabolites and the outcomes of body mass index (BMI) and waist circumference (WC). We examined each of the following NHANES-derived exposure metrics for metabolites of individual phthalates: molar excretion rate (nmol/min), molar amount (nmol), molar concentration (nmol/mL, with and without additional model adjustment for creatinine), creatinine corrected molar concentration (nmol/g creatinine), and reconstructed daily phthalate intake (nmol/kg/day). In order to investigate potential biasing effect of each metric, we first assumed that daily intake of the parent phthalate is the causal exposure. We then constructed a simulated population based on the 2009–2010 NHANES, and randomly assigned each individual a di-2-ethylhexyl phthalate (DEHP) intake dose based on a published distribution, but independent of any other factor. Accordingly, all associations between these randomly assigned intake doses and individuals' BMI and WC should be null. Next, demographic data in the NHANES were incorporated into a pharmacokinetic model to predict urinary molar excretions of five DEHP metabolites based on the randomly assigned DEHP intake. The predicted molar excretions were then used to calculate the same exposure metrics listed above. Three exposure metrics (randomly generated intake, excretion rate, urine concentration) showed no significant associations with BMI, which supports the null hypothesis stated above. In contrast, metrics adjusted for creatinine showed a significant negative correlation, and reconstructed daily intake showed a significant positive correlation, indicating the introduction of bias away from the true (i.e., null) association. Interestingly, trends in the simulation analysis were similar to those seen in the observed NHANES data. Our findings show that, at least in this example case, the choice of exposure metric can introduce significant bias of varying magnitude and direction into the calculation of epidemiologic associations.  相似文献   

15.
The present study aims to investigate how resource strategies, which intend to reduce waste and increase recycling, influence on human exposure to hazardous chemicals from material recycling. In order to examine the flows of hazardous chemicals in recycled material, a mass flow analysis of plastics and paper at European level, including the flow of phthalates, i.e. di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and benzyl-butyl phthalate (BBP), has been performed. The result for the year 2012 shows that 26% of plastic wastes and 60% of paper consumed in Europe were recycled. This corresponds to the finding that approximately 4% of DEHP and BBP and 18% of DBP annual demands in Europe as raw material re-enter the product cycle with recycled plastics and paper. To examine the potential contribution of the phthalate exposure through recycled plastics and paper, a case study assessing the childhood exposures to phthalates from foods packed in recycled paper and plastics has been performed for 2-year-old children in Denmark. The result verifies that an increase in recycled paperboard and PET bottles in food packaging material causes a significant increase in childhood exposure to DBP corresponding to an additional exposure of 0.116–0.355 μg/kg bw/day; up to 18% of the total DBP exposure in Danish 2-year-olds. While most of the DEHP exposure can be explained, more than 50% of DBP and 70% of BBP exposure sources still remain to be identified. Finally, a conceptual framework for a circular economy based on sustainable and clean resource flows is proposed in order to increase material recycling without increasing adverse health effects.  相似文献   

16.
Polybrominated diphenyl ethers (PBDE) are used as flame retardants in a wide variety of products. As part of the Integrated Exposure Assessment Survey (INES), this study aimed to characterize the exposure of an adult German population using duplicate diet samples, which were collected daily over seven consecutive days, and indoor air and house dust measurements. Our study population consisted of 27 female and 23 male healthy subjects, aged 14–60 years, all of whom resided in 34 homes in southern Bavaria. In these 34 residences the air was sampled using glass fiber filters and polyurethane foams and the dust was collected from used vacuum cleaner bags.The median (95th percentile) daily dietary intake of six Tetra- to HeptaBDE congeners was 1.2 ng/kg b.w. (3.3 ng/kg b.w.) or 67.8 ng/day (208 ng/day) (calculated from the 7-day median values of each study subject). Concentrations in indoor air and dust (cumulative Tri- to DecaBDE congener readings) ranged from 8.2 to 477 pg/m³ (median: 37.8 pg/m³) and 36.6 to 1580 ng/g (median: 386 ng/g), respectively. For some congeners, we identified a significant correlation between air and dust levels.The median (95th percentile) blood concentration of total Tetra- to HexaBDE congener readings was 5.6 (13.2) ng/g lipid. No significant sex differences were observed, but higher blood concentrations were found in younger participants. Using a simplified toxicokinetic model to predict the body burden from exposure doses led to results that were of the same order of magnitude as the measured blood concentrations.Based on these measurements and given our exposure assumptions, we estimated for the total tetra- to heptabrominated congener count an average (high) comprehensive total daily intake of 1.2 ng/kg b.w. (2.5 ng/kg b.w.). Overall, our results suggest that dietary exposure is the dominant intake pathway at least in our study population, responsible for 97% (average intake) and 95% (high intake) of the total intake of an adult population.  相似文献   

17.
BackgroundIn animals, exposure to certain phthalates negatively affects the male reproductive function. Human results are conflicting and mostly based on subfertile males, in whom the association between exposure and reproductive function may differ from the general population.ObjectivesTo study if levels of phthalate metabolites were associated with semen quality and reproductive hormones in general Swedish men.MethodsWe recruited 314 young men delivering semen, urine and blood samples at the same visit. We analyzed reproductive hormones and several semen parameters including progressive motility and high DNA stainability (HDS)—a marker for sperm immaturity. In urine, we analyzed metabolites of phthalates, including diethylhexyl phthalate (DEHP). We studied associations between urinary levels of the metabolites and seminal as well as serum reproductive parameters, accounting for potential confounders.ResultsDEHP metabolite levels, particularly urinary mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), were negatively associated with progressive sperm motility, which was 11 (95% CI: 5.0–17) percentage points lower in the highest quartile of MECPP than in the lowest. Further, men in the highest quartile of the DEHP metabolite monoethylhexyl phthalate had 27% (95% CI: 5.5%–53%) higher HDS than men in the lowest quartile.ConclusionsDEHP metabolite levels seemed negatively associated with sperm motility and maturation.  相似文献   

18.
The human exposure estimates for dibutyl (DBP) and bis(2-ethylhexyl) phthalate (DEHP) made by two models EUSES and ACC-Human, and by an estimation approach which utilized measured concentrations in exposure media, were compared. The approach which utilized the latest monitoring data for important exposure media, yielded median daily intakes for adult humans for DBP and DEHP of 2.7 and 5.6 microg/kg body weight per day, respectively, which were in the same range as previous estimates based on back-calculation from urinary metabolites. EUSES estimated average daily intakes of DBP and DEHP for humans that were between 8 and 13 times lower. ACC-Human does not estimate average daily intakes, but ACC-Human-estimated human milk concentrations/fugacities were more than a thousand times lower than measured concentrations/fugacities in human milk. It was concluded that the two models underestimate human exposure to phthalate esters because they consider only a few key pathways that are known to be important for other, more persistent, hydrophobic organic compounds. Further, it was shown that there are differences between the two models on the methodology for estimating concentrations in exposure media such as vegetation, milk, beef and fish. ACC-Human uses a mechanistic approach for estimating transfer through aquatic and terrestrial food chains that are known to be important for human exposure to persistent, hydrophobic organics and can, unlike EUSES, account for food chain metabolism. It proved difficult, however, to obtain organism metabolism rates needed as model inputs to ACC-Human. If exposure estimates of phthalate esters are needed, it is recommended to use an estimation approach based on high quality monitoring data as presented here and/or back-calculate daily intake from concentrations of metabolites in human urine samples from the general population.  相似文献   

19.
PurposePhthalates may interfere with the timing of pubertal development in adolescence and existing studies have shown inconsistent results. This study aims to assess the associations of pubertal onset and progression with urinary concentrations of phthalate metabolites in school-aged boys and girls.MethodsUsing isotope-dilution liquid chromatography tandem mass spectrometry, we analyzed 6 phthalate metabolites in urine samples of 430 children (222 boys and 208 girls) aged 9.7 ± 2.2 years (age range 6.1 to 13.8 years) at baseline and 18 months of follow-up. The associations of exposures to phthalates with pubertal development such as the testis, breast and pubic hair were evaluated using ordered logistic regression models, adjusting for baseline development stage, current chronological age, current body fat composition, and parental education.ResultsUrinary mono-n-butyl phthalate (MnBP) was associated with a 39% increase in the odds of presenting lower pubic hair development stages in boys, and mono (2-ethylhexyl) phthalate (MEHP) (p < 0.10), mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono (2-ethyl-5-oxohexyl) phthalate (MEOHP) were associated with 54%–65% increase in the odds of presenting higher breast development stages in girls (p < 0.05), while MEHHP and MEOHP were also associated with a 70% increase in the odds of menarche onset (p < 0.05). After adjusting for potential confounding variables, the associations of girls' pubertal onset with MnBP, MMP, MEP and MEHP were significant. The odds of girls' breast onset were 4 to 10 times higher in high MnBP, MMP, MEP or MEHP exposure group than in low exposure group.ConclusionsOur findings suggest subtle effects of phthalate metabolites associated with pubertal onset and progression. MnBP exposure may be associated with delayed pubic hair development in boys, while MnBP, MMP, MEP, and MEHP exposures may be associated with breast onset, and MEHP metabolites associated with speedup in breast development progression and earlier menarche onset in girls.  相似文献   

20.
Daily dietary intake of perfluorinated chemicals (PFCs) in relation to serum levels was assessed by determination of nine PFCs including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in matched daily diet duplicates and serum samples. Diet and serum were collected in year 2004 from 20 women in Osaka and Miyagi, Japan. Only PFOS and PFOA were detected in the diet samples and no significant difference between cities was seen. After adjusted by water content, diet concentration of PFOA was significantly higher in Osaka. The median daily intake calculated using the measured diet concentrations was 1.47 ng PFOS/kg b.w. and 1.28 ng PFOA/kg b.w. for Osaka, and 1.08 ng PFOS/kg b.w. and 0.72 ng PFOA/kg b.w. for Miyagi. A significant difference between cities was seen for the serum concentrations with median of 31 ng/mL PFOS and PFOA in Osaka, compared to 14 ng/mL PFOS and 4.6 ng/mL PFOA in Miyagi. Carboxylates such as perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUnDA) were also detected in serum at median levels 6.9 ng/mL and 3.2 ng/mL (Osaka), and 2.8 ng/mL and 5.1 ng/mL (Miyagi). Based on one-compartment model under steady state, dietary intake of PFOS and PFOA accounted for only 22.4% and 23.7% of serum levels in Osaka females, and in contrast 92.5% and 110.6% in Miyagi females, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号