首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The propagules of most species of reef fish are advected from the reef, necessitating a return to reef habitats at the end of the pelagic stage. There is increasing evidence of active attraction to the reef but the sensory abilities of reef fish larvae have not been characterized well enough to fully identify cues. The electrophysiological methods of auditory brainstem response (ABR) and electroolfactogram (EOG) were used to investigate auditory and olfactory abilities of pre- and post-settlement stages of a damselfish, Pomacentrus nagasakiensis (Pisces, Pomacentridae). Audiograms of the two ontogenetic stages were similar. Pre-settlement larvae heard as well as their post-settlement counterparts at all but two of the tested frequencies between 100 Hz and 2,000 Hz. At 100 and 600 Hz, pre-settlement larvae had ABR thresholds 8 dB higher than those of post-settlement juveniles. Both stages were able to detect locally recorded reef sounds. Similarly, no difference in olfactory ability was found between the two ontogenetic stages. Both stages showed olfactory responses to conspecifics as well as L-alanine. Therefore, the auditory and olfactory senses have similar capabilities in both ontogenetic stages. Settlement stage larvae of P. nagasakiensis can hear and smell reef cues but it is unclear as to what extent larvae use these sounds or smells, or both, as cues for locating settlement sites. An erratum to this article can be found at  相似文献   

2.
3.
4.
Seagrass beds are often considered to be important nurseries for coral reef fish, yet the effectiveness of these nursery functions (refuge and food availability) at different juvenile stages is poorly understood. To understand how the demands of juvenile fish on seagrass nursery functions determines the timing of ontogenetic habitat shifts from seagrass beds to coral reefs, we conducted visual transect survey and field tethering and caging experiments on three different sizes of the coral reef fish Pacific yellowtail emperor (Lethrinus atkinsoni) during its juvenile tenure in seagrass beds at Ishigaki Island, southern Japan. The study showed that although the number of individual L. atkinsoni juveniles decreased by >90 % during their stay in the seagrass nursery, the shelter and/or food availability functions of the nursery, at least for a juvenile size of approximately 5 cm total length (TL), provided the best survival and growth option. The timing of ontogenetic migration to coral reefs of larger fish (>8 cm TL) was attributed to foraging efficiency for larger food items in different habitats. Overall, the function of the seagrass bed nursery changed with juvenile body size, with marginally higher survival and significantly greater growth rates during early juvenile stages in seagrass beds compared to coral reefs. This would contribute to the enhancement in the number of individuals eventually recruited to adult populations.  相似文献   

5.
Settlement patterns and the relationship between meroplanktonic larvae and settlement in decapods were studied on the Scottish east coast. Artificial settlement substrates (ASS), deployed at two locations (sandy vs. rocky sea substrates), were employed to collect megalopae and newly settled juveniles. Abundance of meroplanktonic larvae was used as an indicator of larval supply. The results showed a clear seasonality in settlement rates, and in some cases, significant differences between sites were detected. Nevertheless, the interference of the ASS with the surrounding habitat limits the study of spatial variability in settlement rates. Significant cross-correlation was found between the abundance of megalopae and juveniles in the collectors and planktonic larval abundance a month earlier. For individual species, this relationship was observed only in Pisidia longicornis. Complexities caused by the great variety of pre- and post-settlement processes, alongside effects of secondary dispersals of early juveniles may have obscured the relationship between meroplanktonic larvae and juveniles in other species.  相似文献   

6.
This study explores the extent to which ontogenetic habitat shifts modify spatial patterns of fish established at settlement in the Moorea Island lagoon (French Polynesia). The lagoon of Moorea Island was divided into 12 habitat zones (i.e. coral seascapes), which were distinct in terms of depth, wave exposure, and substratum composition. Eighty-two species of recently settled juveniles were recorded from March to June 2001. Visual censuses documented changes in the distribution of juveniles of each species over time among the 12 habitats. Two patterns of juvenile habitat use were found among species. Firstly, some species settled and remained in the same habitat until the adoption of the adult habitats (i.e. recruitment; e.g. Chaetodon citrinellus, Halichoeres hortulanus, Rhinecanthus aculeatus). Secondly, others settled to several habitats and then disappeared from some habitats through differential mortality and/or post-settlement movement (e.g. 65–70 mm size class for Ctenochaetus striatus, 40–45 mm size class for Epinephelus merra, 50–55 mm size class for Scarus sordidus). A comparison of the spatial distribution of juveniles to that of adults (61 species recorded at both stages) illustrated four patterns of subsequent recruitment in habitat use: (1) an increase in the number of habitats used during the adult stage (e.g. H. hortulanus, Mulloidichthys flavolineatus); (2) a decrease in the number of habitats adults used compared to recently settled juveniles (e.g. Chrysiptera leucopoma, Stethojulis bandanensis); (3) the use of different habitat types (e.g. Acanthurus triostegus, Caranx melampygus); and (4) no change in habitat use (e.g. Naso litturatus, Stegastes nigricans). Of the 20 most abundant species recorded in Moorea lagoon, 12 species modified the spatial patterns established at settlement by an ontogenetic habitat shift.Communicated by T. Ikeda, Hakodate  相似文献   

7.
The swimming abilities of larval fishes are important for their survival, potentially affecting their ability to avoid predators, obtain food and control dispersal patterns. Near settlement swimming abilities may also influence spatial and temporal patterns of recruitment. We examined Critical speed (U-crit) swimming ability in late stage larvae of 89 species of coral reef fishes from the Great Barrier Reef and the Caribbean. Coefficients of variation in U-crit calculated at the individual level were high (28.4%), and this was not explained by differences in size or condition factor of these same larvae. Among species U-crit ranged from 5.5 cm s−1 to 100.8 cm s−1 (mean=37.3 cm s−1), with 95% of species able to swim faster than the average current speed around Lizard Island, suggesting that most species should be capable of influencing their spatial and temporal patterns of settlement. Inter-specific differences in swimming ability (at both the family and species levels) were significantly correlated with size and larval morphology. Correlations were found between swimming performance and propulsive area, fineness ratio and aspect ratio, and these morphological parameters may prove useful for predicting swimming ability in other taxa. Overall, the swimming speeds of larvae from the same families at the two locations were relatively similar, although the Lutjanidae and Acanthuridae from the Caribbean were significantly slower than those from the great barrier reef. Differences in swimming speed and body form among late stage larvae suggests that they will respond differently to factors influencing survival and transport during their pelagic phase, as well as habitat use following settlement.  相似文献   

8.
This study examines the abundances of three morphological categories of juvenile corals (massive, branching and encrusting) on two different types of natural substratum, dead massive and dead branching corals. The overall results show that the morphological characteristics of dead coral substratum have a significant influence on the coral recruitment patterns with respect to the morphology of the recruits: juvenile corals of massive and branching types were more abundant on substrates of corresponding morphology. The results obtained from this study suggest that dead coral might attract coral larvae that are morphologically similar. On the other hand, it may be the result of post-settlement mortality. Whatever the mechanism shaping the patterns is, it seems that the physical morphology of the dead coral substrate has a significant influence on the coral recruit assemblage. Hence, we suggest that substrate morphology can be an important qualitative factor for coral settlement and a possible determinant of community structure.  相似文献   

9.
D. S. Stoner 《Marine Biology》1994,121(2):319-326
The rate at which larvae successfully recruit into communities of marine benthic invertebrates is partially dependent upon how well larvae avoid benthic predators and settle on appropriate substrata. Therefore, to be able to predict recruitment success, information is needed on how larvae search for settlement sites, whether larvae preferentially settle on certain substrata, and the extent to which there are adequate cues for larvae to find these substrata. This article describes how larvae of the colonial ascidian Diplosoma similis find settlement sites on a coral reef. Direct field observations of larval settlement were made on a fringing reef in Kaneohe Bay, Oahu, Hawaii, between September 1985 and April 1986. A comparison of the substrata that larvae contacted prior to settlement relative to the percentage cover of these substrata on the study reef suggests that larvae are using a non-contact mode of substratum identification to locate suitable settlement sites. This mode of substratum identification allowed 74% of larvae to evade predation by benthic organisms who would otherwise have eaten larvae if they had been contacted. Of those larvae that evaded predation, 88% subsequently settled on the same two substrata upon which most adults are found (dead coral or the green alga Dictyosphaeria cavernosa). This pattern of settlement was probably a result of active selection, since the two substrata cover only 14.4% of the reef's surface and currents had little effect on the direction in which larvae swam. An important contributing factor to the high success rate of larval settlement on suitable substrata was the lack of any temporal decay in substratum preference. It is concluded that for Diplosoma similis larval supply is a sufficient predictor of larval settlement rate. However, for marine invertebrates whose larvae are passively dispersed and exhibit a greater temporal decay in substratum preference, larval settlement should generally have a greater dependency on spatial variation in the abundance of benthic predators and suitable substrata.  相似文献   

10.
Caribbean seagrass beds are important feeding habitats for so-called nocturnally active zoobenthivorous fish, but the extent to which these fishes use mangroves and seagrass beds as feeding habitats during daytime remains unclear. We hypothesised three feeding strategies: (1) fishes feed opportunistically in mangroves or seagrass beds throughout the day and feed predominantly in seagrass beds during night-time; (2) fishes start feeding in mangroves or seagrass beds during daytime just prior to nocturnal feeding in seagrass beds; (3) after nocturnal feeding in seagrass beds, fishes complete feeding in mangroves or seagrass beds during the morning. We studied the effect of habitat type, fish size, social mode and time of day on resting and feeding behaviour of large juvenile (5–10 cm) and sub-adult (10–15 cm) Haemulon flavolineatum in mangroves and seagrass beds during daytime. Sub-adults occurred in mangroves only, spent most time on resting, and showed rare opportunistic feeding events (concordant with strategy 1), regardless of their social mode (solitary or schooling). In contrast, large juveniles were present in both habitat types and solitary fishes mainly foraged, while schooling fishes mainly rested. Exceptions were small juveniles (±5 cm) in seagrass beds which foraged intensively while schooling. Large juveniles showed more feeding activity in seagrass beds than in mangroves. In both habitat types, they showed benthic feeding, whereas pelagic feeding was observed almost exclusively in the seagrass beds. In both habitat types, their feeding activity was highest during 8:00–10:30 hours (concordant with strategy 3), and for seagrass fishes, it was also high during 17:30–18:30 hours (concordant with strategy 2). The study shows that both mangroves and seagrass beds provide daytime feeding habitats for some life-stages of H. flavolineatum, which is generally considered a nocturnal feeder.  相似文献   

11.
The ability of young coral reef fishes to feed using solely ultraviolet-A (UV-A) radiation during ontogeny was examined using natural prey in experimental tanks. Larvae and juveniles of three coral reef fish species (Pomacentrus amboinensis, Premnas biaculeatus and Apogon compressus) are able to feed successfully using UV-A radiation alone during the later half of the pelagic larval phase. The minimum UV radiation intensities required for larval feeding occur in the field down to depths of 90–130 m in oceanic waters and 15–20 m in turbid inshore waters. There was no abrupt change in UV sensitivity after settlement, indicating that UV photosensitivity may continue to play a significant role in benthic juveniles on coral reefs. Tests of UV sensitivity in the field using light traps indicate that larval and juvenile stages of 16 coral reef fish families are able to detect and respond photopositively to UV wavelengths. These include representatives from families that are unlikely to possess UV sensitivity as adults due to the UV transmission characteristics of the ocular media. Functional UV sensitivity may be more widespread in young coral reef fishes than in the adults, and may play a significant role in detecting zooplanktonic prey.  相似文献   

12.
Abstract: A number of recent studies have linked post-settlement survivorship of Atlantic cod (  Gadus morhua ) with the complexity of the seafloor to which fish settle. Survivorship is greater in habitats of higher complexity (e.g., pebble-cobble substratum with emergent epifauna> pebble-cobble> sand), where cover provides shelter from predators. Fishing with mobile gear such as bottom trawls and dredges reduces the complexity of seafloor habitats. We used a dynamic model to (1) link patterns in habitat-mediated survivorship of post-settlement juvenile cod with spatial variations in habitat complexity, (2) simulate habitat change based on fishing activities, and (3) determine the role of marine protected areas in enhancing recruitment success. Density-dependent natural mortality was specified as three alternative functional response curves to assess the influence of different predator foraging strategies on juvenile survivorship during the first 12 months of demersal existence. We applied the model to a theoretical patch of hard-bottom substrata and to a case study based on seafloor habitat distributions at Stellwagen Bank National Marine Sanctuary (Gulf of Maine, Northwest Atlantic). Our results demonstrate that patterns in the shape of response surfaces that show the relationship between juvenile cod survivorship and density as well as movement rate were similar regardless of functional response type, that juvenile cod movement rates and post-settlement density were critical for predicting the effects of marine protected-area size on survivorship, and that habitat change caused by fishing has significant negative effects on juvenile cod survivorship and use of marine protected areas can ameliorate such effects.  相似文献   

13.
Acroporid corals are the main reef-building corals that provide three-dimensional habitats for other reef organisms, but are decreasing on many reefs worldwide due to natural and anthropogenic disturbances. In this study, temporal patterns of larval settlement and survivorship of two broadcast-spawning acroporid coral species, Acropora muricata and A. valida, were examined through laboratory rearing experiments to better understand the potential for larval dispersal of this important coral group. Many larvae were attached (but not metamorphosed) to settlement tiles on the first examination 3–4 days after spawning (AS). The first permanent larval settlement (i.e. metamorphosed and permanently settled juvenile polyps) occurred at 5–6 days AS, and most larval settlement (85–97% of total) occurred within 9–10 days AS. Larval survivorship decreased substantially to around 50% by the first week of the experiment and to approximately 10% by the second to third week. The rates of larval attachment, settlement, and the initial drop in survivorship of larvae suggest that effective dispersal of some acroporid species may largely be completed within the first few weeks AS.  相似文献   

14.
Although herbivorous fish form critical linkages between primary producers and higher trophic levels, the major factors regulating their spatial structure in seagrass systems remain poorly understood. The present study examined the parrotfish Leptoscarus vaigiensis in seagrass meadows of a tropical embayment in the western Indian Ocean. Stomach content analysis and direct field observations showed that L. vaigiensis is an efficient grazer, feeding almost exclusively on seagrass leaves. Seagrass shoot density was highly correlated to all density variables (total, juvenile and subadult) and juvenile biomass of L. vaigiensis, while subadult biomass was predicted by distance to neighbouring coral habitat. Moreover, density and biomass of predatory fish (piscivores) were predicted by seagrass canopy height and the distribution patterns of predators followed those of L. vaigiensis. Hence, factors at local (seagrass structural complexity and feeding mode) and landscape scale levels (seascape context and distribution of piscivores) likely mutually structure herbivorous fish communities. The findings underscore the importance of incorporating multiple scale-dependent factors when managing coastal seagrass ecosystems and their associated key species.  相似文献   

15.
Pelagic larval duration (PLD) is a commonly used proxy for dispersal potential in coral reef fishes. Here we examine the relationship between PLD, genetic structure and genetic variability in geographically widespread and ecological generalist species from one coral reef fish family (Pomacentridae) that differs in mean larval duration by more than a month. The genetic structure was estimated in eight species using a mitochondrial molecular marker (D-loop) and in a sub-set of five species using nuclear molecular markers (ISSRs). Estimates of genetic differentiation were similar among species with pelagic larvae, but differed between molecular markers. The mtDNA indicated no structure in all species except one, while the ISSR indicated some structure between the sampling locations in all species. We detected a relationship between PLD and genetic structure using both markers. These relationships, however, were caused by a single species, Acanthochromis polyacanthus, which differs from all the other species examined here in lacking a larval phase. With this species excluded, there was no relationship between PLD and genetic structure using either marker despite a range of PLDs of more than 20 days. Genetic diversities were generally high in all species and did not differ significantly among species and locations. Nucleotide diversity and total heterozygosity were negatively related to maximum PLD but again these relationships were caused by A. polyacanthus and disappeared when this species was excluded. These genetic patterns are consistent with moderate gene flow among well-connected locations and indicate that at this phylogenetic level (i.e., within family) the duration of the pelagic larval phase is unrelated to the patterns of genetic differentiation.  相似文献   

16.
Edge effects are a dominant subject in landscape ecology literature, yet they are highly variable and poorly understood. Often, the literature suggests simple models for edge effects-positive (enhancement at the edge), negative (enhancement at the interior), or no effect (neutral)--on a variety of metrics, including abundance, diversity, and mortality. In the marine realm, much of this work has focused on fragmented seagrass habitats due to their importance for a variety of commercially important species. In this study, the settlement, recruitment, and survival of bay scallops was investigated across a variety of seagrass patch treatments. By simultaneously collecting settlers (those viable larvae available to settle and metamorphose) and recruits (those settlers that survive some period of time, in this case, 6 weeks) on the same collectors, we were able to demonstrate a "balance" between positive and negative edge effects, resulting in a net neutral effect. Scallop settlement was significantly enhanced along seagrass edges, regardless of patch type while survival was elevated within patch interiors. However, recruitment (the net result of settlement and post-settlement loss) did not vary significantly from edge to center, representing a neutral effect. Further, results suggest that post-settlement loss, most likely due to predation, appears to be the dominant mechanism structuring scallop abundance, not patterns in settlement. These data illustrate the complexity of edge effects, and suggest that the metric used to investigate the effect (be it abundance, survival, or other metrics) can often influence the magnitude and direction of the perceived effect. Traditionally, high predation along a habitat edge would have indicated an "ecological trap" for the species in question; however, this study demonstrates that, at the population level, an ecological trap may not exist.  相似文献   

17.
P. Baelde 《Marine Biology》1990,105(1):163-173
The structures of fish assemblages in twoThalassia testudinum beds in Guadeloupe, French West Indies, one adjacent to mangroves and the other adjacent to coral reefs, were compared between January 1983 and May 1984. The aim of the study was to compare the influences of mangroves and coral reefs on the utilization of seagrass beds by fishes through examination of species composition, catch rate, size of fishes and temporal changes. The two fish assemblages were similar in terms of the number of species they had in common (nearly 44% of the total number of species collected) and the great abundance of juveniles. They both comprised species that usually inhabit other habitats, i.e., estuaries, open waters or coral reefs. Estuary-associated species (e.g. Gerreidae) were the most abundant species in the seagrass bed near the mangroves, while small pelagic species (e.g. Clupeidae) were the most abundant species in the seagrass bed near the coral reefs. The seagrass bed near the mangroves was preferentially utilized as a nursery area by small juveniles of various species (e.g. Clupeidae, Sparidae, Gerreidae, and at least one coral reef species,Ocyurus chrysurus). The abundance of these species varied frequently, suggesting successive arrivals and departures of juveniles over time. The seagrass bed near the coral reefs was characteristically utilized by fishes that are more able to avoid predation, i.e., fishes that forage over seagrass beds at night and shelter in or near the coral reefs during the day (large juveniles of coral reef species and adults of schooling pelagic species, respectively). The constant migrations of these fishes between the coral reefs and seagrass beds explained the relative stability of the structure of the fish assemblage in the seagrass bed over time. Thus, the two seagrass beds were not equivalent habitats for fishes. The distinct ecological influences of the mangroves (as a nursery for small juveniles) and coral reefs (as a shelter for larger fishes) on the nearby seagrass beds was clearly reflected by the distinct utilizations of these seagrass beds by fishes.  相似文献   

18.
S. E. Miller 《Marine Biology》1993,117(4):635-645
The variable duration of the pelagic phase of metamorphically competent larvae of benthic marine invertebrates is set by an interaction between environmental factors and larval traits that together influence the chance that a larva will encounter and respond to a suitable settlement site. In the Hawaiian aeolid nudibranch Phestilla sibogae Bergh, an extended competent larval phase resulted in a cascade of negative effects on larval and post-larval life-history traits. When raised as fed (i.e., facultatively planktotrophic) larvae, an extended larval period resulted in lower larval survival, slightly lower metamorphic success, and delayed reproduction. When raised as unfed (i.e., lecithotrophic) larvae, an extended larval period resulted in lower larval and post-larval weights, survival, metamorphic success, and reproductive output, and also resulted in a longer juvenile period and delayed reproduction. The chance nature of locating a settlement site generally spreads these negative effects over all larvae of a cohort, and so balances the relative fitness of the genetic lineages within a population.  相似文献   

19.
Vermeij MJ  Sandin SA 《Ecology》2008,89(7):1994-2004
The local densities of heterospecifics and conspecifics are known to have profound effects on the dynamics of many benthic species, including rates of settlement and early post-settlement survivorship. We described the early life history of the Caribbean coral, Siderastrea radians by tracking the population dynamics from recently settled planulae to juveniles. Through three years of observation, settlement correlated with the abundance of other benthic organisms, principally turf algae (negatively) and crustose coralline algae (positively). In addition, adult density showed independent effects on coral settlement and early post-settlement survivorship. Settlement rates increased across low levels of adult cover and saturated at a maximum around 10% cover. Early post-settlement survivorship decreased with adult cover, revealing structuring density dependence in coral settlers. The earliest life stages of corals are defined by low survivorship, with survivorship increasing appreciably with colony size. However, recent settlers (one-polyp individuals, < 1-year-old) are more likely to grow into two-polyp juveniles than older single polyps (> 1-year-old) that were delayed in their development. The early benthic phase of corals is defined by a severe demographic bottleneck for S. radians, with appreciable density-dependent and density-independent effects on survivorship. For effective management and restoration of globally imperiled coral reefs, we must focus more attention on this little studied, but dynamic, early life history period of corals.  相似文献   

20.
We examined the relationships between daily pattern of settlement and environmental parameters during two consecutive years in two littoral fishes, Lipophrys trigloides (Blenniidae) and Chromis chromis (Pomacentridae), in the NW Mediterranean Sea. We also used individual early-life traits (pelagic larval duration, size at hatching and size at settlement) calculated from otoliths, to study the proximate causes of settlement variability and size-selective mortality after settlement. Several early-life characteristics of L. trigloides (planktonic larval duration and size at hatching), and environmental variables averaged during the whole planktonic period (e.g. water temperature, wave height, solar radiation) were related with the magnitude of settlement. In contrast, C. chromis showed no significant relationships between early-life traits and the magnitude of settlement, and a weak relationship between settlement magnitude and environmental variables. Furthermore, juvenile survivors showed larger size at hatching than settlers, indicating that size at hatching affected the juvenile survival of the two species. These results suggest that survival was linked largely to conditions at hatching for both species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号