首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Residual stress profile in a component is often considered as the critical characteristic as it directly affects the fatigue life of a machined component. This work presents an analytical model for the prediction of residual stresses in orthogonal machining of AISI4340 steel. The novelty of the model lies in the physics-based approach focusing on the nature of contact stresses in various machining zones and the effect of machining temperature. The model incorporates: (i) stresses in three contact regions viz. shear, tool-nose-work piece and tool flank and machined surface, (ii) machining temperature, (iii) strain, strain rate and temperature dependent work material properties, (iv) plastic stresses evaluation by two algorithms, S-J and hybrid, (v) relaxation procedure and (iv) cutting conditions. The model benchmarking shows (86–88%) agreement between the experimental and predicted residual stresses in the X- and Y-directions. On the machined surface, the tensile residual stresses decrease with an increase the edge radius and increase with an increase the cutting speed. However, below the surface, the compressive residual stresses increase with an increase the depth of cut. Further, it is observed that the proposed model with hybrid algorithm gives better results at a lower feed rate, whereas with the S-J algorithm, at a higher feed rate.  相似文献   

2.
A new approach to theoretical modeling and simulation of face milling forces is presented. The present approach is based on a predictive machining theory in which machining characteristic factors in continuous cutting with a single-point cutting tool can be predicted from the workpiece material properties, tool geometry, and cutting conditions. The action of a milling cutter is considered as the simultaneous work of a number of single-point cutting tools, and the milling forces are predicted from input data of workpiece material properties, cutter parameters and tooth geometry, cutting condition, cutter and workpiece vibration structure parameters, and types of milling. A predictive force model for face milling is developed using this approach. In the model, the workpiece material properties are considered as functions of strain, strain rate, and temperature. The ratio of cutter tooth engagement over milling is taken into account for the determination of temperature in the cutting region. Cutter runout is included in the modeling for the chip load. The relative displacement between the cutter and workpiece due to the cutter and workpiece vibration is also included in the modeling to consider the effect on the undeformed chip thickness. A milling force simulation system has been developed using the model, and face milling experimental tests have been conducted to verify the simulation system. It is shown that the simulation results agree well with experimental results.  相似文献   

3.
采用取条法和化学浸蚀法相结合对不锈钢 /铝 (铝合金 ) /不锈钢多层复合板的残余应力值进行了测量。结果表明外层不锈钢受到长度和宽度方向的残余拉应力作用 ,随着轧制复合变形量的增加 ,多层复合板的残余应力值会逐渐增大。此外还通过热 力耦合的弹塑性有限元法对不锈钢 /铝 (铝合金 ) /不锈钢多层复合板的残余应力场进行了模拟仿真 ,并将模拟结果与试验测量值进行了分析和对比。  相似文献   

4.
The intensive temperatures in high speed machining not only limit the tool life but also impair the machined surface by inducing tensile residual stresses, microcracks and thermal damage. This problem can be handled largely by reducing the cutting temperature. When the conventional coolant is applied to the cutting zone, it fails to remove the extent of the heat effectively. Hence, a cryogenic coolant is highly recommended for this purpose. In this paper, an attempt has been made to use cryogenic carbon dioxide (CO2) as the cutting fluid. Experimental investigations are carried out by turning AISI 1045 steel in which the efficiency of cryogenic CO2 is compared to that of dry and wet machining with respect to cutting temperature, cutting forces, chip disposal and surface roughness. The experimental results show that the application of cryogenic CO2 as the cutting fluid is an efficient coolant for the turning operation as it reduced the cutting temperature by 5%–22% when compared with conventional machining.It is also observed that the surface finish is improved to an appreciable amount in the finished work piece on the application of cryogenic CO2. The surface finish is improved by 5%–25% in the cryogenic condition compared with wet machining.  相似文献   

5.
Residual stress induced by machining is complex and difficult to predict, since it involves mechanical loads, temperature gradients or phase transformation in the generation mechanism. In this work, an experiment with a statistical design for the residual stress tensor was performed to investigate the residual stress profile on a machined surface. In order to understand the generation mechanism of residual stress in machining, three variables and workpiece materials were carefully selected to focus on the mechanical loads and avoid the temperature gradients and phase transformation on the machined surface. The mechanical loads considered here included the chip formation force at the primary shear zone and the plowing force at the tool tip–workpiece contact. Depths of cut and rake angles were selected to alter the chip formation force, and the tool tip radius was designed to emphasize the plowing effect. The workpiece material was aluminum 3003. The experimental results showed that the chip formation force provides basic shapes of the residual stress profile for a machined surface. It decides the depth of the peak residual stress below the surface. However, the plowing force was the dominating effect on the surface residual stress, causing high stresses on the surface. The plowing force can shift the surface stress from tensile to compressive. Additionally, the measured stress tensor proved that in-plane shear stress exists for the machined surface.  相似文献   

6.
采用有限元计算模型对热连轧生产过程中带钢断面温度场的分布进行了预测,建立了描述含铌微合金钢软化行为的再结晶模型及计算精轧过程应力-应变曲线的流变应力模型。在此基础上,对X46级管线钢工业轧制中的奥氏体再结晶动力学、微观组织演变及精轧的轧制力、轧制力矩、轧制功率进行了预测,结果与实测值吻合较好,反映了工业生产的实际。  相似文献   

7.
The evolution of mechanical components into smaller size generating a need for microwelding of these components using laser which offers better control as compared to arc and plasma processing. The present article describes the numerical simulation of laser micro-spot welding using finite element method. A two dimensional Gaussian distributed surface heat flux as a function of time is used to perform a sequentially coupled thermal and mechanical analysis. The model is used for simulating laser micro-spot welding of stainless steel sheet under different power conditions and configurations of mechanical constraints. The temperature dependent physical properties of SS304 have been considered for the simulation and an isotropic strain hardening model has been used. The simulated weld bead dimensions have been compared with experimental results and temperature profiles have been calculated. The maximum deformation of 0.02 mm is obtained with maximum laser power of 75 W. The thermal stress is more inducing factor to temperature induced residual stresses and plastic strain as compared to mechanical constraints. The plastic strain changes significantly by displacement constraints as compared to residual stress.  相似文献   

8.
In an attempt to map the residual stress distributions after friction stir welding of copper canisters, a three-dimensional thermo-mechanical model has been formulated by coupling heat transfer and elasto-plasticity analyses. The transient temperature field around the tool is simulated by a moving heat source. The simulation shows that the residual stress distribution in a thick-wall copper canister is sensitive to the circumferential angle and asymmetrical to the weld line. Both tensile and compressive stresses emerge along the weld line and its vicinity. The maximum tensile stress appears in the circumferential direction on the outer surface. The maximum tensile stress, whether it is predicted by the finite element method or measured by the hole-drilling technique and the X-ray diffraction method, does not exceed 50 MPa in general.  相似文献   

9.
An experimental investigation was conducted to determine the effect of tool cutting edge geometry on workpiece subsurface deformation and through-thickness residual stresses for finish hard turning of through-hardened AISI 52100 steel. Polycrystalline cubic boron nitride (PCBN) inserts with “up-sharp” edges, edge hones, and chamfers were used as the cutting tools in this study. Examination of the workpiece microstructure reveals that large edge hone tools produce substantial subsurface plastic flow. Flow is not observed when turning with small edge hone tools or chamfered tools, and the workpiece microstructure appears random for these cases. Examination of through-thickness residual stresses shows that large edge hone tools produce deeper, more compressive residual stresses than are produced by small edge hone tools or chamfered tools. Explanations for these effects are offered based on assumed contact conditions between the tool and workpiece.  相似文献   

10.
The selective introduction of compressive residual stresses is gaining increasing importance as design tool in today's manufacturing process chains. Manufacturing processes such as shot peening or hydraulic autofrettage are used to improve the surface integrity, and hence the fatigue life of the components. However, measuring the corresponding residual stress depth profiles is a challenging task as the results will always include the manufacturing and preparation history of the components. In this paper, results of residual stress measurements with X-ray diffraction and optical hole-drilling after autofrettage and sample preparation are presented and compared to a finite element analysis for two representative geometries. The presented approach can be used to predict the influence of the mandatory sample preparation procedure. As a consequence, the effectiveness of the manufacturing process to improve the surface integrity can be predicted more precisely and wrong interpretations of the measured residual stress depth profiles can be avoided.  相似文献   

11.
Metalworking fluids (MWFs) are used widely in machining process to dissipate heat, lubricate moving surfaces, and clear chips. They have also been linked to a number of environmental and worker health problems. To reduce these impacts, minimum quantity lubrication (MQL) sprays of MWF delivered in air or CO2 have been proposed. MQL sprays can achieve performance comparable with conventional water-based or straight oil MWFs while only delivering a small fraction of the fluid. This performance advantage could be explained by the enhanced penetration into the cutting zone that results from delivering MWF in high pressure and precise sprays. To explore this hypothesis, an analytical model of MWF penetration into the flank face of the cutting zone is developed and validated using experimental data. The model is based on a derivation of the Navier–Stokes equation and the Reynolds equation for lubrication and applied to an orthogonal cutting geometry under steady-state conditions. A solution to the model is obtained using a numerical strategy of discretizing the analytical scheme with two-dimensional centered finite difference method. Penetration into the cutting zone is estimated for MQL sprays delivered in air, CO2 and N2 as well as two conventional MWFs, straight oil and semi-synthetic emulsion. The model suggests that conventional MWFs, do not penetrate the cutting zone fully and fail to provide direct cooling to the flank zone where wear is most likely to occur. MQL sprays do penetrate the cutting zone completely. Using convective heat transfer coefficients from a previous study, a finite element heat balance is carried out on the tool to understand how each fluid impacts temperature near the flank tip of the tool. The results of the modeling effort are consistent with experimental measurements of tool temperature during turning of titanium (6AL4V) using a K313 carbide tool. The prediction of temperature near the flank indicates that MQL sprays do suppress temperatures near the flank effectively. These results help explain the low levels of tool wear observed for some MQL sprays, particularly those based on high pressure CO2. This modeling framework provides valuable insight into how lubricant delivery characteristics such as speed, viscosity, and cutting zone geometry can impact lubricant penetration.  相似文献   

12.
The elliptical vibration cutting (EVC) technique has been found to be a promising technique for ultraprecision machining of various materials. In each overlapping EVC cycle, the thickness of cut (TOC) of work material, and the tool velocity get continuously varied. These two inherent phenomena, in fact, introduce transient characteristics into its cutting mechanics, which are considered to be different from the one applied for conventional cutting technique. Recently, a few theoretical models have been developed to understand the material removal mechanism with the EVC technique; however, in those studies, the transient phenomena were not considered. In the present research, an analytical force model for the orthogonal EVC process was developed in order to fully understand the EVC mechanism, and to more accurately predict the transient cutting force values. Three important factors: (i) transient TOC, (ii) transient shear angle, and (iii) transition characteristic of friction reversal were investigated and analyzed mainly based on geometric modeling and the Lee and Shaffer's slip-line solution. Mathematical evaluation shows that they may have significant influence on EVC process, and thus on its output performance. In order to validate the proposed force model, a series of low-frequency orthogonal EVC tests were conducted. The experimental transient cutting force values were compared with the predicted values calculated using the proposed model, and they are found to be in a good agreement with each other.  相似文献   

13.
The purpose of this work is to assess the effect of welding fixtures on distributions and values of residual stresses during Gas Tungsten Arc Welding (GTAW). The butt-joint GTAW of AA5251 plate is investigated using a transient thermo-mechanical analysis performed by the finite element program, ABAQUS. The model considers two different welding conditions including unconstrained and perfectly constrained conditions while macro examination and residual stress measurements by implementing hole drilling techniques are utilized to evaluate the predictions. The results show that the utilizing of a welding fixture alters the temperature field within the plate being welded and the depth of the weld pool decreases by about 21% in this case. In addition, the application of a welding fixture effectively changes both distributions and maximum values of transverse and longitudinal residual stresses.  相似文献   

14.
In recent years, demands for miniature components have increased due to their reduced size, weight and energy consumption. In particular, brittle materials such as glass can provide high stiffness, hardness, corrosion resistance and high-temperature strength for various biomedical and high-temperature applications. In this study, cutting properties and the effects of machining parameters on the ductile cutting of soda-lime glass are investigated through the nano-scale scratching process. In order to understand the fundamentals of the material removal mechanism at the atomic scale, such as machined surface quality, cutting forces and the apparent friction, theoretical investigation along with experimental study are needed. Scribing tests have been performed using a single crystal diamond atomic force microscope (AFM) probe as the scratching tool, in order to find the cutting mechanism of soda-lime glass in the nano-scale. The extended lateral force calibration method is proposed to acquire accurate lateral forces. The experimental thrust and cutting forces are obtained and apparent friction coefficients are deduced. The effects of feed rates and the ploughing to shearing transition of soda-lime glass have been investigated.  相似文献   

15.
Conductive heat transfer in contour laser beam cutting is analyzed by using a transient, two-dimensional finite difference model, and the result is combined with a simple analytic model. From the calculation results, the correlation is derived between workpiece temperature and opening angles at a corner in contour cutting. As a result, a modified analytic solution is developed to predict if excessive workpiece heating occurs for given cutting contours in a nested plate. The main objective is to use the computation results in the optimization of torch path planning to provide fully automated CNC programming software for laser cutting. To efficiently apply the analytic model in torch path planning, the critical temperature that should be avoided during the cutting sequence is considered. This leads to an improvement of the cutting quality in the automatic cutting process.  相似文献   

16.
Laser microscale peen forming has recently received more and more attention as a viable laser processing technology as it not only imparts desirable residual stress for improvement of fatigue life of the material, but can also precisely control part deformation. In the present study, the effect of energy level on the deformation mechanism in laser microscale peen forming was investigated by both numerical and experimental methods. Deformation curvatures and residual stress distributions of both sides of the specimen, characterized by X-ray microdiffraction, were compared with the results obtained from FEM simulation. The forming mechanism for convex and concave bending was explained in terms of the resulting pressure, compressive stress distribution, and plastic strain. Differences in residual stress distribution patterns were also investigated as a function of the forming mechanism.  相似文献   

17.
某型导弹尾翼弹簧贮存寿命评估   总被引:7,自引:5,他引:2  
应力松弛是弹簧的主要失效形式之一,温度对其影响明显。利用温度加速试验方法,对某尾翼弹簧的贮存寿命进行了研究。设计并制造了弹簧的应力松弛试验装置,利用该装置对弹簧设计了4个试验温度点,并以弹簧应力损失率下降10%为失效指标,根据阿伦尼乌斯方程对弹簧进行了贮存寿命预测,评估了该弹簧在室温条件下的贮存寿命。  相似文献   

18.
某型导弹尾翼弹簧贮存寿命评估   总被引:1,自引:0,他引:1       下载免费PDF全文
应力松弛是弹簧的主要失效形式之一,温度对其影响明显。利用温度加速试验方法,对某尾翼弹簧的贮存寿命进行了研究。设计并制造了弹簧的应力松弛试验装置,利用该装置对弹簧设计了4个试验温度点,并以弹簧应力损失率下降10%为失效指标,根据阿伦尼乌斯方程对弹簧进行了贮存寿命预测,评估了该弹簧在室温条件下的贮存寿命。  相似文献   

19.
The mechanisms of melt ejection and striation formation in continuous wave laser cutting of mild steel are discussed. Melt ejection from the cutting front is shown to be a cyclic phenomenon. Striation formation is strongly affected by the oscillatory characteristic of the thin liquid film on the cutting front during melt ejection, together with the oxidation and heat transfer process. Cutting speed determines whether the liquid film will rupture or generate waves on the cutting front. Theoretical explanations are given according to the instability theory of a thin liquid film in a high-velocity gas jet and the diffusion-controlled oxidation theory. Striation frequency and depth are predicted according to the above theories. Experimental investigations were carried out and the results are consistent with the calculations. The better understanding has shed light on further investigations and optimal process development.  相似文献   

20.
In Part 1 of this paper [beginning on page 54], the heat flow in contour laser beam cutting was calculated by using the finite difference model, and a modified analytic model was developed based on the numerical experiments Part 2 addresses the problem of optimal torch path planning for the 2D laser cutting of a stock plate nested with irregular parts. Under the constraint of the relative positions of parts enforced by nesting, the optimization algorithm generates a feasible cutting path. The simulated annealing technique is adopted for solving the torch path optimization problem to minimize a specified cost function. The objective is to traverse the cutting contours with a minimum path length and, at the same time, to minimize the effect of heat on the cutting path sequence. To minimize the heat effect and avoid overheating, the critical temperature that should be avoided during the whole cutting sequence is considered in this way, a global solution can be obtained in a reasonable time. Several examples are presented to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号