首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is focused on novel utilizations of the fundamental modes of deformation of tube end forming for assembling sheet panels to thin-walled tubular profiles.The objective is to present an innovative and environmental friendly joining technology built upon the combination of compression beading with tube inversion that can successfully eliminate currently available technologies based on mechanical fixing with fasteners, welding and structural adhesive bonding. The technology works at room temperature, is capable of ensuring significant economic and time savings and offers potential for opening new markets for the assembly of lightweight frame structures.The presentation is supported by experimentation and numerical modelling based on independently determined mechanical properties of the materials with the purpose of characterizing and evaluating the process feasibility limits as a function of the major operative parameters.The feasibility of joining sheet panels to tubular profiles by means of the proposed technology is demonstrated by presenting industrial applications and by evaluating the performance of a safety auto part in an operation failure test.  相似文献   

2.
Mass reduction of automotive body structures is a critical part of achieving reduced CO2 emissions in the automotive industry. There has been significant work on the application of ultra high strength steels and aluminum alloys. However, the next paradigm is the integrated use of both materials, which poses a challenge of how to join the dissimilar materials. Friction stir forming is a new manufacturing process for joining dissimilar materials. The concept of this process is stir heating one material and forming it into a mechanical interlocking joint with the second material. In this research the process was experimentally analyzed in a position controlled robotic friction stir welding machine between aluminum and steel workpieces. New tool geometries were evaluated toward the goal of optimizing joint strength. The significant process parameters were identified and their optimized settings for the current experimental conditions defined using a design of experiments methodology. A scanning electron microscope was used to characterize the bonding and joint structure for single and multi-pin configurations. Two failure modes, aluminum sheet peeling and bonding delamination, i.e. braze fracture, were identified. It was found that the presence of zinc coating on the steel and overall joint geometry greatly affected the joint strength. The aluminum–zinc braze joint appears to be the largest contributor to joint strength for the single-pin joint configuration. The multi-pin geometry enabled a distribution of load to the four pins following fracture of the braze for increased joint toughness and ductility. Thus, the FSF method has been shown to exhibit potential for joining of aluminum to steel.  相似文献   

3.
A rotating anvil similar to a pinless friction stir welding (FSW) tool can be applied to friction stir spot welding (FSSW) of thin metal plates. FSSW is a solid-state joining process that is currently being used by automotive manufacturers as an alternative to rivets and traditional resistance spot welding. The principal detractor of this process is the keyhole left by pin extraction, which can be detrimental to the weld strength. A pinless tool can be used to eliminate the keyhole. However, this approach is limited to joining thin sheet (≤1 mm). Using a rotating anvil with the FSSW process permits the joining of thicker cross sections, improves the mechanical strength of the spot weld and reduces the reaction forces on the spot welding frame. A numerical model of the process, tensile shear tests and macrosection analysis are used to evaluate the spot welds.Macrosection and numerical analysis reveals that the material flow between the pinless tool and rotating anvil is complex and unique to this process. It has been found that the use of a rotating anvil for FSSW is a viable means to create quality spot welds in thicker weldments.  相似文献   

4.
Laminated tooling is a relatively fast and simple method to make metal tools directly for injection molding or resin transfer molding in the rapid prototyping field. Metal sheets are usually cut, stacked, aligned, and joined. Joining of metal sheets is usually accomplished by brazing or soldering. In the joining process, all the metal sheet layers should be rigidly joined, and thus heat should be applied to the whole volume of the laminate. Therefore, furnace brazing or diffusion bonding processes are considered suitable in laminated tooling.In this study, a rapid laminated tooling system composed of a CO2 laser, a furnace, and a high-speed milling machine was developed. From the three-dimensional information of a product, slicing into two-dimensional contours was performed and low-carbon steel sheets were cut with the CO2 laser along the paths that were created from the slicing results. The metal sheets were joined by furnace brazing and by dip soldering. Furnace brazing was for relatively high-temperature tooling processes such as injection molding, and dip soldering was for low-temperature tooling processes such as reactive injection molding (RIM). Dip soldering was introduced as a new, simple, and fast joining process of steel laminates. In both joining methods, wetting experiments were performed to ensure the optimal values of the process parameters. Finally, laminate tools were machined with a high-speed milling machine to improve the surface quality.  相似文献   

5.
减振复合钢板是一种应用于汽车覆盖件方面的新型材料 ,有利于减振和减轻重量。介绍了其成形性和成形过程数值模拟的研究进展 ,并对未来发展进行了展望  相似文献   

6.
The evolution of mechanical components into smaller size generating a need for microwelding of these components using laser which offers better control as compared to arc and plasma processing. The present article describes the numerical simulation of laser micro-spot welding using finite element method. A two dimensional Gaussian distributed surface heat flux as a function of time is used to perform a sequentially coupled thermal and mechanical analysis. The model is used for simulating laser micro-spot welding of stainless steel sheet under different power conditions and configurations of mechanical constraints. The temperature dependent physical properties of SS304 have been considered for the simulation and an isotropic strain hardening model has been used. The simulated weld bead dimensions have been compared with experimental results and temperature profiles have been calculated. The maximum deformation of 0.02 mm is obtained with maximum laser power of 75 W. The thermal stress is more inducing factor to temperature induced residual stresses and plastic strain as compared to mechanical constraints. The plastic strain changes significantly by displacement constraints as compared to residual stress.  相似文献   

7.
Laser forming process is used in forming and bending of metallic and non-metallic sheets. Laser beam irradiation causes a localized temperature increase and a localized mechanical strength decrease. In this article, an external mechanical force is added to a laser beam irradiation, which is called external force-assisted laser forming process, to gain a 90-degree bending angle. Furthermore, Numerical simulation of the process is performed to achieve a good understanding of the process. Simulation results show that more than two-third of the final forming is due to the laser beam irradiation. Equivalent plastic strain values during laser forming and external force-assisted laser forming processes are compared. Results show that equivalent plastic strain in laser forming process increases in a step pattern, with increasing in scan pass numbers. This occurs because when the laser beam irradiates on the sheet surface, it reduces the yield strength of the sheet. Equivalent plastic strain in external force-assisted laser forming process has an oscillatory step nature. This attributes to simultaneous effects of strain hardening and thermal induced reduction of yield strength of the sheet. Simulations were in good accordance with experiments.  相似文献   

8.
The goal of the research was to determine the limits and conditions in which the sheet hydroforming process provides a significant advantage over stamping in deep drawing of AA5754 aluminum sheets. Specifically, the maximum draw depth achievable by stamping, warm stamping (WF), sheet hydroforming (SHF), and sheet thermo-hydroforming (THF) of AA5754 aluminum alloy were quantified through experimental and computational modeling. A limited number of forming experiments were conducted with AA5754 aluminum sheets using a cylindrical punch and counteracting fluid at different temperatures and pressures. Several parameters, such as force–displacement, hydroforming pressure and temperature, and the maximum draw depth prior to wrinkling or tearing were measured during the forming process to make comparisons with simulations. The computational study included the simulation of stamping, WF, SHF and THF of AA5754 aluminum sheet with the LS-Dyna code, and the Barlat 2000-2d yield function with temperature-dependent coefficients. To predict the onset of wrinkling and tearing, the numerically generated, temperature-dependent forming limit diagrams (FLDs) based on the Barlat 2000-2d yield function were used. It was found that compared with stamping, SHF and THF can achieve more than 100% deeper draw depths with AA5754 aluminum sheet. The stamping simulations were used also to calculate the optimum blank size and die corner radii for the limiting draw ratio (LDR). The LDR was found to be very sensitive to the punch and die corner radii used in the experiments, which represent the curvature of character lines in an actual part. The LDR for AA5754 aluminum sheet was found to be 1.33 and 2.21 for sharp and round die corner radii, respectively. Overall, it was concluded that SHF is most ideal for deep drawing of aluminum sheets with sharp radii features. With the additional drawability provided by SHF, the automotive industry would be able to make difficult-to-form aluminum parts that cannot be stamped without product concessions such as increasing the die radii.  相似文献   

9.
Single point incremental forming (SPIF) is a new sheet metal forming process characterized by higher formability, product independent tooling and greater process flexibility. The inability of conventional single pass SPIF to form vertical walls without failure is overcome by forming multiple intermediate shapes before forming the final component, i.e., multi-pass single point incremental forming (MSPIF). A major issue with MSPIF is significant geometric inaccuracy of the formed component, due to the generation of stepped features on the base. This work proposes analytical formulations that are shown to accurately and quantitatively predict the stepped feature formation in MSPIF. Additionally, a relationship is derived among the material constants used in these analytical equations, the yield stress and thickness of the blank material, such that the computational effort required for the calibration of these constants can be minimized. Finally, the physical effects of yield stress and sheet thickness on the rigid body translation are further discussed.  相似文献   

10.
Laser forming, a novel manufacturing method for bending sheet metal first reported in 1985, has been investigated as an alternative to hot brake forming (industry standard) of titanium sheet parts for the aircraft industry. Laser forming involves scanning a focused or partially defocused laser beam over the surface of a titanium workpiece to cause localized heating along the bend line and angular deflection toward the beam. The main advantage that laser forming has over conventional brake forming is increased process flexibility. An experimental investigation of this process (primarily designed experiments) met the following objectives: identified the response variables related to change in geometry (bend angle) and material microstructure; characterized the influence of process variables (scanning speed, beam diameter, laser power) on these response variables; determined the degree of controllability over the process variables; and evaluated the suitability of laser forming for the aircraft industry (most important), all with respect to titanium sheet. It has been determined that laser forming with an Nd:YAG laser is a controllable, flexible manufacturing process for titanium sheet bending. Unfortunately, these advantages over traditional hot brake forming are overshadowed by the fact that, with regard to forming with titanium, laser forming is significantly slower and more labor and energy intensive, and results in unacceptable material properties at the bend line according to aircraft industry standards. These findings cast doubt over the assertions of some researchers that laser forming may be a viable manufacturing process for parts made in small batches. Instead, it appears that it may be best suited for rapid prototyping of sheet metal parts.  相似文献   

11.

Background & Aim

Reproductive carrier screening seeks to identify couples at a high risk of having offspring affected by autosomal recessive and X-linked (XL) conditions. The aim of this paper is to provide a comprehensive overview of existing carrier screening panels by examining their gene content and characteristics, identifying the most common genes/conditions included in these panels, and analyzing their listed prices.

Methods

A comprehensive evaluation of existing carrier screening panels was conducted by searching for web-based content, reviewing information brochures, and establishing direct contact with the providers via email or phone.

Results

Twenty-two panels and their providers were identified with a cumulative total of 2205 unique genes. The number of genes included in these panels varied from 44 to 2054. Only 15 genes (0.7%) were included in all the panels. The carrier frequency of these 15 common genes and their associated conditions varied greatly, but the conditions associated with the genes are “severe”. The price of these 22 panels ranged from $349 to $4320 per couple (USD in 2023). The correlation between the listed price and the number of selected genes among these panels was small and not statistically significant (r = 0.1023, p = 0.6959).

Conclusion

Considerable discrepancies exist among carrier screening panels. Ongoing research and monitoring are necessary to capture the dynamic nature of the carrier screening landscape, providing up-to-date information for clinical practice and informed decision-making.  相似文献   

12.
Attributes related to the dimensional quality of hot rolled steels are very important in commercial sectors that make direct use of this product, because delay or equipment damage can be avoided when forming in downstream operations. In this research, the steel sheet edge trimming process and its relationship with the defect known as broken edge is experimental and numerically studied. The type of material, horizontal clearance between knives and the energy spent during the cutting process are analyzed in detail. A metal-mechanical study is carried out for obtaining a microstructural hardness and flow stress characterization. Consequently, the edge trimming process is FEM simulated and its results in relation to knife penetration and shear stress lead to determining the energy spent during the cutting process. A mathematical model is determined under the consideration that minimum energy gives the optimum cutting conditions. The model proposes a reliable value for the horizontal clearance (Hc), between knives, taking as the principal factors: energy consumed during the edge trimming process, sheet thickness (Th), carbon content (C) and/or its ultimate tensile strength, expressed as: Hc = α + βTh  γC. A comparison of the recommended numerical results with the best practical conditions is carried out and a high coincidence is successfully found. This model is expected to be easily adopted as a tool where operators can adjust and control the parameters of process, and then, as a result, produce a sheet without edge trimming defects as well as a reduction in efficiency costs.  相似文献   

13.
Fibre reinforced polymer (FRP) materials are being increasingly used in several applications, but especially in the construction and transportation industries. The composites industry is now producing a wide range of FRP products that include strengthening strips and sheets, reinforcing bars, structural profiles, sandwich panels, moulded planks and piping. The waste management of FRP materials, in particular those made with thermosetting resins, is a critical issue for the composites industry because these materials cannot be reprocessed. Therefore, most thermosetting FRP waste is presently sent to landfill, in spite of the significant environmental impact caused by disposing of it in this way. Because more and more waste is being produced throughout the life cycle of FRPs, innovative solutions are needed to manage it. This paper first presents a state-of-the-art review of the present alternatives available to manage FRP waste. It then describes an experimental study conducted on the technical feasibility of incorporating the fine waste generated during the manufacturing of glass fibre reinforced polymer (GFRP) composites in concrete mixtures. Tests were carried out to evaluate the fresh-state and hardened-state properties of concrete mixes in which between 0% and 20% of sand was replaced by GFRP fine waste. Although the incorporation of high proportions of GFRP waste was found to worsen concrete performance in terms of both mechanical and durability-related properties, it seems feasible to incorporate low proportions and reuse GFRP fine waste in concrete, particularly in non-structural applications such as architectural concrete or pavement slabs, where good mechanical properties are less important.  相似文献   

14.
汽车后桥壳主要由冲压—焊接和铸造这两种工艺方法生产而成.此文讨论了一种新型的汽车后桥壳生产工艺,轴向加压的液压胀形法,并讨论了它的工艺制定及模具设计的一些基本方法,对汽车后轿壳的液压胀形工艺的进一步完善和发展提供了一定的基础.最后,还推测了液压胀形这种新型的工艺方法和发展方向.  相似文献   

15.
Reconfigurable discrete die tooling is attractive for reducing the lead time, initial costs, and recurring costs associated with stretch forming of sheet metal parts such as aircraft body panels and wing skins as well as automotive and marine components. Current tooling for the stretch forming process requires substantial lead time for fabrication and is inflexible and expensive. To develop discrete die tooling for stretch forming, three different discrete die designs have been proposed, and small-scale prototypes of each have been built. In this paper, the three designs are compared to each other in terms of performance criteria, including pin positioning accuracy and repeatability, setting speed, suitability for a production environment, fabrication costs, manufacturability and maintainability, and maximum forming load capacity. The advantages and disadvantages of each design are also discussed.  相似文献   

16.
Extrusion of magnesium billets is associated with large deformations, high strain rates and high temperatures, which results in computationally challenging problems in process simulation. A series of experiments were done to obtain the simulation parameters: stress–strain curves, friction factors and heat transfer coefficient etc. Three-dimensional, thermo-mechanically coupled finite element simulations of extruding a wrought magnesium alloy AZ31 into a small bar at certain ram speeds were performed. The computed model was rotational symmetric and built up by meshing. Computed parameters including workpiece material characteristics and process conditions (billet temperature, reduction ratio, and ram speed) were taken into consideration. The distributions of temperature were different comparing the transient-state extrusion with steady-state extrusion. The extrusion simulation was the reliable predictions of strain rate, effective strains, effective stresses and metal flow velocity in an AZ31 billet during direct extrusion.  相似文献   

17.
主要介绍板料在拉深成形过程中单位压边力值对板料成形性能的影响。研究方法采用仿真技术 ,指出板料在成形过程中如按最初设定的单位压边力值进行成形 ,那么 ,板料成形过程中单位压边力值将逐渐增大 ,严重影响板料成形极限。如果采用控制板料在成形过程中压边圈下坯料的单位压边力值 ,将提高板料成形极限。其结论为生产现场提高板料成形性能和表面质量提供了一种可实施的方法。  相似文献   

18.
New lightweight sandwich materials challenge existing forming processes as well as following process steps. As such the manufacturing potential of shear cutting has to be evaluated. Two cutting methods are compared. Method commonly used is shear-cutting within one stroke engaged, the other one is known as counter-shear cutting, which uses two strokes.The challenges of cutting sandwich materials are variation of hole diameter within the different layers, fraying of the textiles, deformation of the hole contour and burr formation. These effects occur in conventional shear cutting as the intermediate layer and the lower sheet metal are cut by the scrap of the upper sheet instead of the cutting punch.The following methodology included shear cutting with closed cutting edge i.e. cutting of holes into five different sandwich materials. The sandwiches exemplarily represent multiple kinds of possible material designs. For instance, aluminum and steel face sheets, different thicknesses of intermediate layers and different intermediate layers materials such as integrated textile fibers have been used. Adequate cutting parameters such as die clearance and the use of a blank holder have been determined. To achieve good results a stiff machine design with good guidance and precise control of punch position was crucial.Observations of conventional shear cutting revealed the need of small cutting clearance of 4%. High burnish area is possible for the upper face sheet due to the superimposed force by the lower face sheet. The major conclusion depicted that high cutting quality of sandwich materials requires counter shear cutting. Hence, the roll-over of the lower sheet facing the intermediate layer, the burnish area at the lower sheet, good cutting quality of the fibers improve significantly and burr formation is avoided completely. Summarized this paper provides cutting parameters for sandwich materials based on experimental work.  相似文献   

19.
基于连续介质力学及有限变形理论 ,建立了用于三维板料成形过程模拟的有限元模型 ,开发了动力显式算法的板料成形过程模拟的有限元分析程序DESSFORMM3D。最后 ,用笔者新开发的动力显式弹粘塑性有限元程序对不同压边情况下半球形件的拉深过程进行分析 ,并把数值结果与实验进行对比 ,验证了软件的计算结果。  相似文献   

20.
Product panels are presented as a promising method to find solutions for environmental problems arising from specific product groups. These panels consist of representatives of manufacturers, retail, research, environmental and consumer administration, recycling, and various other stakeholders who work together in the panel to draft plans of action aiming at improvements in the environmental characteristics of products and services, and promotion for environmentally sound products and services in the various markets.The purpose of this paper is to examine the factors that promote successful panel work as based on the experiences from the Danish and Finnish product panels. In addition, we aim at finding several indicators in panel work that can help lead to successful results already in the early phase and, on the other hand, help to recognize panels that will be ineffective from the viewpoint of environmental policy. We also describe how the findings from the Danish and Finnish textile panels were applied to a new product panel in Finland dealing with furniture and how this panel has started its work.The paper is based on existing material about the three panels, including reports and websites of the Danish product panels and the Finnish Furniture panel. In addition, unpublished memos of the meetings of the three panels have been studied. An evaluation report of the Danish panels was very useful for the discussion of the findings. The authors have also participated in the furniture panel as a member and a secretary.Experiences from the Danish textile panel and some early results of the Finnish furniture panel indicate that, under the right conditions, gathering stakeholders from the whole product chain and administration into a panel can be an efficient way to promote the market for greener products and thus, can serve as a tool for integrated product policy. Key success factors include the basic idea, committed people and openness of the product panels. It is also important that the initiator give some guidance in the form of schedule, action plan and some preset objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号