首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conventional additives in metalworking fluids (MWFs) have effects in improving the machining conditions. However, many additives can lead to environmental contamination and health problems. In this paper, lignin obtained from wood is considered as a new “green” additive in MWFs. Lignin has been used as additives in other areas like pasted lead electrodes and polypropylene/coir composites but has never been applied in cutting fluids. In this paper, lignin is dissolved in 5% conventional MWF aqueous solutions in 8 different concentrations through injection and atomization methods. Then, experiments are conducted to evaluate the effectiveness of lignin containing MWFs in micro-milling operations. The performance is compared with that of 5% conventional cutting fluid in terms of machining forces, tool wears, and burr formations. The results show that the concentration of 0.015% lignin leads to the least cutting forces, tool wear and burrs. The results also show that an appropriate concentration of lignin in MWFs can help to improve the cooling and lubrication performances during machining. The results of this paper thus indicate that lignin has a potential to be used as an additive in metalworking fluids.  相似文献   

2.
This paper presents a new technology for minimizing the use of metalworking fluids (MWFs) during the machining process that is atomization-less and occupational friendly. Micro-flood (MF) technology utilizes direct contact between the cutting tool and the MWF without the interaction of a gas medium. Experiments were conducted in high volume mass production environment turning HSLA (high strength low alloy) SAE 070Y steel. Machining performance and total air mass particulates were investigated in dry machining, Near dry machining (NDM) via atomized spray mist and MF technology. Open-atmosphere air monitoring indicated that total mass particulates behaved in an almost linear fashion with respect to gas atomization pressure, whereas the MWF flow rate demonstrated logarithmic trends in NDM applications using an atomized spray. Nozzle orientations directed upward into the air also produced higher mg/m3 concentrations (such as flank) than chip and rake face orientations that were directed down. Greater separation existed at higher gas atomization pressures, MWF flow rates and by changing the MWF type. At extreme limits, nozzle orientation affected mg/m3 concentration as much as 4–5 mg/m3 for water-miscible MWFs and 15–22 mg/m3 for non-water-miscible MWFs. Tool-life performance varied greatly among MWF type and flow rate, and in all cases MF technology performed better than NDM using an atomized spray mist. Direct and consistent MWF penetration to cutting zone using MF technology lowered tool-wear on the average of 12–75% compared to NDM at the same MWF flow rate. Compared to dry machining, NDM improved tool-wear on the average by 20–243%. In one case, tool-wear performance was improved by 616% at 0.15 mm using MF technology compared to dry machining at a nominal 0.925 mm tool-wear. Overall, a large mass reduction of particulates can be achieved employing MF technology that would have been unrealistic for an open-atmosphere machining environment employing an atomized spray mist. On the average, MF technology can maintain a total air mass particulate of less than 0.4 mg/m3 in the occupational work zone using MWF flow rates up to 1260 ml/h, regardless of the MWF classification. Atomized spray mist applications are capable meeting the 5 mg/m3 OSHA limit if MWF flow rates are less than 160 ml/h, air pressures are less than 0.137 MPa (20 psi) using water-miscible MWFs and air pressures are less than 0.0344 MPa (5 psi) using non-water-miscible MWFs.  相似文献   

3.
Although there are already successful industrial experiences in other machining industries with the elimination of coolants, this is not so in the grinding industry due to the large amounts of generated heat that must be evacuated from the contact zone. In this work, a new approach to the elimination of fluids in grinding is presented. The technology is based on the use of a hybrid Minimum Quantity of Lubricant (MQL)-low temperature CO2 system that reduces lubrication consumption. Abrasive grits are protected by the layer of frozen oil, resulting in a significant improvement in grinding wheel life and surface quality of the machined component. Although the cooling action is reduced with respect to the conventional coolant, no thermal damage was observed on the workpiece.  相似文献   

4.
The aim of this work is to investigate the effect of metal-working fluid (MWF) concentration on the machining responses including tool life and wear, cutting force, friction coefficient, chip morphology, and surface roughness during the machining of titanium with the use of the ACF spray system. Five different concentrations from 5 to 15% of a water-soluble metalworking fluid (MWF) were applied during turning of a titanium alloy, Ti–6Al–4V. The thermo-physical properties such as viscosity, surface tension and thermal conductivity of these concentrations were also measured. The test results demonstrate that the tool life first extends with the increase in MWF concentration and then drops with further increase. At low concentration (e.g., 5%), a lack of the lubrication effect causes to increase in a higher friction at the tool–chip interface resulting in severe chipping and tool nose/flank wear within a short machining time. On the other hand, at high concentration, the cooling effect is less. This increases cutting temperature and a faster thermal softening/chipping/notching of the tool material and higher friction at the tool–chip–workpiece interaction zones resulting in early tool failure. A good balance between the cooling and the lubrication effects seems to be found at the 10% MWF concentration as it offers the best machining performance. However, machining with flood coolant is observed to perform the best in the range of 5–7%.  相似文献   

5.
Minimum quantity lubrication (MQL) is a cost-effective and environmentally friendly alternative to flood cooling. MQL spray jet has been shown to have potential to be applied successfully in different machining processes. Since the amount of lubricating liquid employed in MQL jet is very low, it is necessary to generate and apply the MQL spray efficiently. However, efficient application of MQL is not only related to spray atomization characteristics and delivery parameters but is also affected by machining conditions. The present paper demonstrates a theoretical and experimental investigation on the spray atomization and delivery parameters in the grinding process of Al2O3 engineering ceramics. The spray atomization characteristics studied are carrier gas velocity, liquid droplet size and liquid droplet velocity. Experiments were performed to verify the delivery parameters of MQL spray including nozzle angle, nozzle distance, lubricant flow rate and gas flow rate in the case of Al2O3 ceramics grinding. The experimental results confirm the theoretical outcomes and indicate that by applying optimal spray delivery parameters efficient lubrication takes place. Moreover, efficient lubrication of Al2O3 ceramics grinding can decrease the challenges existing in ceramics grinding processes by reducing grinding forces and surface roughness.  相似文献   

6.
Significant amount of work is reported on development of vegetable oil based metalworking fluids (MWFs). Many also report on development and performance evaluation of vegetable based oils. For many of these water-based MWFs with vegetable oils, much effort is focused on stable emulsification of vegetable oil in water using a variety of surfactants. It has been found that surfactant-free stable emulsification of oil in water is possible through ultrasonic vibration. However, emulsification through ultrasonic atomization has not yet been considered, and the feasibility of emulsified metalworking fluids through ultrasonic atomization has not been investigated. In this paper, stable emulsification of vegetable oil in water has been achieved through ultrasonic atomization without using any surfactant. The emulsified vegetable oil in water is directly used to investigate its effectiveness as MWF in milling operations. Lower cutting forces, chip thickness, and burr amount are observed with vegetable oil-in-water emulsion compared to conventional MWF. The experimental results show strong potential for vegetable oil-in-water emulsion obtained through ultrasonic atomization as an effective MWF.  相似文献   

7.
The intensive temperatures in high speed machining not only limit the tool life but also impair the machined surface by inducing tensile residual stresses, microcracks and thermal damage. This problem can be handled largely by reducing the cutting temperature. When the conventional coolant is applied to the cutting zone, it fails to remove the extent of the heat effectively. Hence, a cryogenic coolant is highly recommended for this purpose. In this paper, an attempt has been made to use cryogenic carbon dioxide (CO2) as the cutting fluid. Experimental investigations are carried out by turning AISI 1045 steel in which the efficiency of cryogenic CO2 is compared to that of dry and wet machining with respect to cutting temperature, cutting forces, chip disposal and surface roughness. The experimental results show that the application of cryogenic CO2 as the cutting fluid is an efficient coolant for the turning operation as it reduced the cutting temperature by 5%–22% when compared with conventional machining.It is also observed that the surface finish is improved to an appreciable amount in the finished work piece on the application of cryogenic CO2. The surface finish is improved by 5%–25% in the cryogenic condition compared with wet machining.  相似文献   

8.
This research has been conducted to study the influence of the abrasive and coolant–lubricant types on the minimum quantity lubrication (MQL) grinding performance. One type of CBN and three types of conventional wheels (corundum) have been tested. The tests have been performed in presence of fluid, air jet and eleven types of coolant–lubricants, as well as, in dry condition. The results indicate that the finest surface quality and lower grinding forces could be obtained while grinding with CBN wheel. In case of conventional wheels, the coarser and high porosity wheels induce much proper grinding results. Furthermore, grinding when utilizing MQL with oil results in higher grinding performance.  相似文献   

9.
One of the main environmental pollution sources related to machine building industry is the huge amount of cutting fluids which are supplied during the machining processes. In order to avoid the problems induced by cutting fluids' usage, considerable progress has been recently made in the field of near-dry machining (NDM). Converting conventional processes to minimal quantity lubrication (MQL) methods imposes new tasks' classification within the tribiological system in order to guarantee the process safety and product quality. This paper gives an overview on some requirements to be considered for a successful MQL application into industrial practice. Its last part is focused on the evaluation of NDM effects on the gear milling process efficiency, with respect to hob wear, surface quality, cooling effect, and environment protection.  相似文献   

10.
An investigation on minimum quantity lubrication (MQL) grinding was carried out with the scope of documenting the process efficiency of oil-based nanolubricants. The nanolubricants were composed of MoS2 nanoparticles (<100 nm) over coated with organic agents, dispersed in two different base oils—mineral oil (paraffin) and vegetable oil (soybean). Surface grinding tests were carried out on cast iron and EN 24 steel under different lubrication conditions—MQL using nanolubricants (varying compositional chemistry and concentration of nanoparticles), pure base oils (without nanoparticles) and base oils containing MoS2 microparticles (3–5 μm), and flood grinding using water-based coolant. Specific energy, friction coefficient in grinding and G-ratio were used as measurands for determining the process efficiency. Results show that MQL grinding with nanolubricants increases the process efficiency by reducing energy consumption, frictional losses at the wheel–workpiece interface and tool wear. The process efficiency is also found to increase with increasing nanoparticle concentration. Soybean and paraffin based-nanolubricant performed best for steel and cast iron, respectively, showing a possible functional relationship between the compositional chemistry of nanolubricant and the workpiece material, which will be the goal of future work.  相似文献   

11.
This paper outlines the Taguchi optimization methodology, which is applied to optimize the cutting parameters in face milling when machining AlMg3 (EN AW 5754) with HSS (high speed steel) tool under semi-finishing conditions in order to get the best surface roughness and the minimum power consumption. Beside the conventional flood lubrication, the investigations include the minimal quantity lubrication and the dry milling. These environment-friendly cutting techniques are considered two practical ways to the cleaner manufacturing in the context of the sustainable production. The parameters evaluated are the cutting speed, the depth of cut, the feed rate and the cooling lubrication techniques (cutting fluid flow). The appropriate orthogonal array, signal to noise (S/N) ratio and Pareto analysis of variance (ANOVA) are employed to analyze the effect of the mentioned parameters on the good surface finish (surface roughness). This paper illustrates the application of the techniques for single performance characteristics optimization, which employs the weighting factors to each of the S/N ration of the responses to obtain a multi-response S/N ratio for each trial of the orthogonal array and, finally, a single optimal process parameters setting. Using Taguchi method for the design of experiments (DOE), it is investigated the significant influence and the parameters interaction effect with minimum number of trials as compared with a full factorial design.  相似文献   

12.
Tool life has been a vital issue in machining titanium alloys. Recently, an atomization-based cutting fluid (ACF) application has been found to be an effective approach for cooling and lubrication in micromachining operations. In this study, an ACF spray system is developed for macro-scale turning of Ti–6Al–4V. The spray system is designed to minimize interaction between the fluid droplets, and the gas nozzle to control the divergence of the fluid droplets. Experiments are conducted to study the effect of five specific ACF spray parameters including fluid flow rate, spray distance, impingement angle, and type and pressure level of the droplet carrier gas on cutting forces, tool life, and chip characteristics. It has been observed that the combination of lower pressure (150 psi) air-mixed CO2 with a higher flow rate (20 ml/min) and a larger spray distance (35 mm) produces a significantly longer tool life and broken chips. The results also reveal that the ACF spray system can extend tool life up to 40–50% over flood cooling.  相似文献   

13.
对板料拉深成形中的两种常用润滑模式进行了研究 ,并按膜厚尺寸对这两种润滑模式进行分类。在分析其润滑机理的基础上提出一种复合润滑模式 ,这种润滑模式使液体润滑剂和微米级粉体两种润滑介质的优势互相补充。实验证明 ,具有很好的润滑效果。另外 ,提出纳米微粒添加剂在板料润滑中的应用前景  相似文献   

14.
Transient tool temperatures in interrupted machining processes were investigated. The initial focus was feed-direction modulated turning. Here, the instantaneous uncut chip thickness (IUCT) was modeled including the regenerative effect introduced by the modulation. Treating the tool as a one-eighth semi-infinite body, for a rectangular heat patch governed by the IUCT at the corner, the tool heat conduction problem was solved. The Green’s function solution procedure included heat convection from exterior surfaces. The results indicated that modulation lowered the cutting temperature, more significantly at a higher modulation frequency. However, heat conduction into the tool dominated over convection to the ambient. The IUCT was found to lag the peak temperature, indicating that modulation can possibly alter the thermal softening of the cutting tool in continuous cutting without a concomitant decrease in material removal rate. The same tool temperature model applied to face-milling indicated that the peak temperature occurred only at cut exit. Carefully planned interrupted hard-facing experiments were performed varying the frequency and duration of interruption. Tool-life data confirmed the beneficial effects of lower cutting temperatures due to slight interruption.  相似文献   

15.
It is required to replace the aluminum fluoride coating, which is a popular lubricant for aluminum alloy cold forging in Japan, with environmentally friendly lubricants, because the aluminum fluoride coating has high environmental risks and needs much expense. Evaluations of lubrication performance are necessary before lubricant replacement. The authors proposed new friction test based on combined forward spline-backward can extrusion. It can realize large surface expansion, which is a characteristic of aluminum cold forging. In the present paper, a double-layer-type environmentally friendly solid lubricant film and the aluminum fluoride coating were applied to a precipitation hardened aluminum alloy. The lubrication performance was evaluated by the friction test. The double-layer-type lubricant showed superior performance enough for the replacement. The effect of surface treatment applied to workpiece on the lubrication performance was also investigated. The surface asperity generated by a wet-blasting showed high pickup resistance and low friction.  相似文献   

16.
辽宁省港口邻近区域海运废气排放测算   总被引:1,自引:1,他引:1       下载免费PDF全文
为准确测算沿海地区船舶废气排放量,基于试验数据确定了NOx、CO、HC和CO2排放因子;结合文献资料和海事局进出港船舶签证数据,采用基于船舶活动过程的方法测算了2014年辽宁省港口邻近区域〔距港口减速区外边界25 n mile(1 n mile=1 852 m)以外的边界线与港口陆地岸线所围成的区域〕海运废气排放清单. 结果表明:2014年辽宁省港口邻近区域海运NOx、CO、HC、CO2、SO2和PM(颗粒物)的排放量分别为11 827.1、971.4、399.6、1 097 426.5、11 654.1和959.2 t;散货船、集装箱船和油船3种主要类型船舶的NOx、CO、HC、CO2、SO2和PM的分担率之和分别为74.7%、77.8%、70.8%、68.0%、70.9%和70.6%;主机NOx、CO、HC、CO2、SO2和PM的分担率最大,分别为63.7%、63.0%、46.0%、40.4%、46.4%和45.3%;停泊工况下的NOx、CO、HC、CO2、SO2和PM排放量分别为3 318.3、281.7、168.3、520 194.9、4 894.0和411.5 t. 船舶降速运行、减少停港时间、燃用低硫油和向船舶供应岸电等措施能降低港口邻近区域海运废气排放. 基础数据缺乏或数据代表性不足给废气排放清单带来了一定的不确定性.   相似文献   

17.
Stellite alloys, which have been widely used in the aerospace, automotive and chemical industries, are hard-to-cut cobalt-based materials. This study investigates the machinability of stellite 12 alloys with uncoated carbide cutting tool grades YG610 (K01-K10) and YT726 (K05-K10/M20) and SANDVIK coated carbide tool SNMG150612-SM1105 under dry cutting conditions. Both wear mechanisms and failure modes of the uncoated and coated tools were investigated with turning experiments. The results show that the coated tool SM1105 remarkably outperforms the uncoated tools; and the cutting tool YG610 generally outperforms YT726 under all cutting conditions. Built-up edge was found with YG610 in some cutting conditions and with SM1105 at cutting speed of 16 m/min. Tool surface burning marks were observed on YT726 at relatively higher cutting speeds. Wear develops slowly with coated tools SM1105 until VB reaches 0.2 mm at most conditions (except at v = 43 m/min, f = 0.25 mm/r). Excessive tool flank typically resulted in tool breakage at the cutting edge for uncoated tools. Abrasive and adhesive wear of cutting tools were observed at low cutting speeds while diffusion and chemical wear occurred at higher cutting speeds.  相似文献   

18.
本研究以3种钢铁厂碱渣直接法固碳技术为研究对象,该技术将钢渣进行碳酸化处理,可快速永久地将CO2固化储存在钢渣中,气固相反应可分别在高压釜、泥浆反应器和超重力旋转床的水溶液中一步完成,并将其分别定义为T1、T2、T3.通过Umberto软件建立生命周期模型,对3种技术的资源环境影响进行评估.结果表明,T1的环境影响最高,其次为T3,T2的环境影响最小.技术评价显示,T3在技术效率、资源消耗、环境影响方面具有较好的综合效益.敏感性分析表明,加热效率的敏感性系数分别为0.97、0.97和0.46.转换率与温室气体排放的关系分别呈上升、倒U型和下降的变化趋势.提高加热效率、合理利用热源及选择合适的技术效率,将有利于技术优化,减少技术的环境影响,提高固碳效率.  相似文献   

19.
For machining operations such as drilling and tapping, the challenge of achieving dry machining is difficult due to the significant role that cutting fluid plays in lubrication and chip removal. A new approach for dry deep hole drilling of aluminum is presented. This new method utilizes a magnetostrictively actuated tool holder to modulate the axial position of a drill tip and thus vary the chip size. Under appropriate modulation conditions, small chips are produced that are relatively easy to evacuate through the drill flutes. The development of the magnetostrictive tool holder system is described and its performance is evaluated. The results of drilling tests performed with the magnetostrictive tool holder system are reported, and the new tool holder is demonstrated to offer promise as an alternative to drilling with a cutting fluid.  相似文献   

20.
The attractive combination of high mechanical strength, good corrosion resistance and relatively low cost has contributed to making duplex stainless steels (DSSs) one of the fastest growing groups of stainless steels. As the importance of DSSs is increasing, practical information about their successful machining is expected to be crucial. To address this industrial need, standard EN 1.4462 and super EN 1.4410 DSSs are machined under constant cutting speed multi-pass facing operations. A systematic approach which employs different modeling and optimization tools under a three phase investigation scheme has been adopted. In phase I, the effect of design variables such as cutting parameters, cutting fluids and axial length of cuts are investigated using the D-Optimal method. The mathematical models for performance characteristics such as; percentage increase in radial cutting force (%Fr), effective cutting power (Pe), maximum tool flank wear (VBmax) and chip volume ratio (R) are developed using response surface methodology (RSM). The adequacy of derived models for each cutting scenario is checked using analysis of variance (ANOVA). Parametric meta-heuristic optimization using Cuckoo search (CS) algorithm is then performed to determine the optimum design variable set for each performance. In the phase II, comprehensive experiment-based production cost and production rate models are developed. To overcome the conflict between the desire of minimizing the production cost and maximizing the production rate, compromise solutions are suggested using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The alternatives are ranked according to their relative closeness to the ideal solution. In the phase III, expert systems based on fuzzy rule modeling approach are adopted to derive measures of machining operational sustainability called operational sustainability index (OSI). Artificial neural network (ANN) based models are developed to study the effect of design variables on computed OSIs. Cuckoo search neural network systems (CSNNS) are finally utilized to constrainedly optimize the cutting process per each cutting scenario. The most appropriate cutting setup to ensure successful turning of standard EN 1.4462 and super EN 1.4410 for each scenario is selected in accordance with conditions which give the maximum OSI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号