首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach to theoretical modeling and simulation of face milling forces is presented. The present approach is based on a predictive machining theory in which machining characteristic factors in continuous cutting with a single-point cutting tool can be predicted from the workpiece material properties, tool geometry, and cutting conditions. The action of a milling cutter is considered as the simultaneous work of a number of single-point cutting tools, and the milling forces are predicted from input data of workpiece material properties, cutter parameters and tooth geometry, cutting condition, cutter and workpiece vibration structure parameters, and types of milling. A predictive force model for face milling is developed using this approach. In the model, the workpiece material properties are considered as functions of strain, strain rate, and temperature. The ratio of cutter tooth engagement over milling is taken into account for the determination of temperature in the cutting region. Cutter runout is included in the modeling for the chip load. The relative displacement between the cutter and workpiece due to the cutter and workpiece vibration is also included in the modeling to consider the effect on the undeformed chip thickness. A milling force simulation system has been developed using the model, and face milling experimental tests have been conducted to verify the simulation system. It is shown that the simulation results agree well with experimental results.  相似文献   

2.
Models for chatter prediction in machining often use a mechanistic force model that calculate the force as the product of a material dependent cutting constant and chip area. However, in reality, the forces are the result of complex interaction between the tool and the chip, and are affected by many factors. The effects of these complex, and often nonlinear, factors on the machining dynamics may only be included in chatter prediction if the chip formation process is simulated concurrently with simulation of the machining dynamics. In this paper, finite element simulation of the chip formation process is combined with simulation of chatter dynamics and the inter-relationship between the chip formation process and the chatter phenomenon is investigated. Mesh adaptation technique is used to simulate the chip formation within an FEM elastoplastic analysis with dynamic effects and frictional contact. The combined modeling predicts the occurrence of process damping at low cutting speeds, which other models are generally unable to predict.  相似文献   

3.
A major obstacle that limits the productivity in machining operations is the presence of machine tool chatter. Machining is a dynamic process and chatter behavior depends upon a number of different aspects including spindle speeds, material properties, tool geometry, and even the location of tool respect to the rest of machine. Many of the traditional models used to predict chatter stability lobes assume that parameters such as natural frequency, stiffness, and cutting coefficients remain constant. In reality, these parameters vary and they affect the chatter stability. The uncertainty in these parameters can be taken into consideration by employing the robust stability theory into a two degree of freedom milling model. Utilizing the Edge theorem and the Zero Exclusion condition, a robust chatter stability model, based on the analytical chatter stability milling model, is developed. This improves the reliability compared to the projected pseudo single degree of freedom model. The method is verified experimentally for milling operations while considering a changing natural frequency and cutting coefficient.  相似文献   

4.
High-speed machining (HSM), specifically end milling and ball end cutting, is attracting interest in the aerospace industry for the machining of complex 3D aerofoil surfaces in titanium alloys and nickel-based superalloys. Following a brief introduction on HSM and related aerospace work, the paper reviews published data on the effect of cutter/workpiece orientation, also known as engagement or tilt angle, on tool performance. Such angles are defined as ±βfN and ±βf.Experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force, and workpiece surface roughness when high-speed ball end milling Inconel 718™. Dry cutting was performed using 8 mm diameter PVD-coated solid carbide cutters with the workpiece mounted at an angle of 45° from the cutter axis.A horizontal downward (-βfN) cutting orientation provided the best tool life with cut lengths ∼50% longer than for all other directions (+βfN, +βf, and –βf). Evaluation of cutting forces and associated spectrum analysis of results indicated that cutters employed in a horizontal downward direction produced the least vibration. This contributed to improved workpiece surface roughness, with typical mean values of ∼0.4 μm Ra as opposed to ∼1.25 μm Ra when machining in the vertical downward (–βf) direction.  相似文献   

5.
This paper describes an analytical solution for turning and milling stability that includes process damping effects. Comparisons between the new analytical solution, time-domain simulation, and experiment are provided. The velocity-dependent process damping model applied in the analysis relies on a single coefficient similar to the specific cutting force approach to modeling cutting force. The process damping coefficient is identified experimentally using a flexure-based machining setup for a selected tool-workpiece pair (carbide insert-AISI 1018 steel). The effects of tool wear and cutting edge relief angle are also evaluated. It is shown that a smaller relief angle or higher wear results in increased process damping and improved stability at low spindle speeds.  相似文献   

6.
Hydroxyapatite (HAP) is a widely used bio-ceramic in the fields of orthopedics and dentistry. This study investigates the machinability of nano-crystalline HAP (nHAP) bio-ceramic in end milling operations, using uncoated carbide tool under dry cutting conditions. Efforts are focused on the effects of various machining conditions on surface integrity. A first order surface roughness model for the end milling of nHAP was developed using response surface methodology (RSM), relating surface roughness to the cutting parameters: cutting speed, feed, and depth of cut. Model analysis showed that all three cutting parameters have significant effect on surface roughness. However, the current model has limited statistical predictive power and a higher order model is desired. Furthermore, tool wear and chip morphology was studied. Machined surface analysis showed that the surface integrity was good, and material removal was caused by brittle fracture without plastic flow.  相似文献   

7.
Laser assisted micro milling (LAMM) is capable of generating three-dimensional micro scale features in hard-to-machine materials. This paper compares the process capability of LAMM with conventional micro milling of a hardened tool steel. In particular, the potential advantages of LAMM over micro milling with respect to cutting forces, tool wear, material removal rate, burr formation and surface roughness are investigated when micro milling hardened A2 tool steel (62 HRC). The results show that LAMM has significant advantages over micro milling, especially in terms of cutting forces, material removal rate and tool wear. The average reduction in the resultant cutting force is found to be up to 69% with laser assist. In addition, tool wear is found to be substantially less with laser assist even when the material removal rates are increased by a factor of six over the tool manufacturer recommended cutting conditions.  相似文献   

8.
One of the main environmental pollution sources related to machine building industry is the huge amount of cutting fluids which are supplied during the machining processes. In order to avoid the problems induced by cutting fluids' usage, considerable progress has been recently made in the field of near-dry machining (NDM). Converting conventional processes to minimal quantity lubrication (MQL) methods imposes new tasks' classification within the tribiological system in order to guarantee the process safety and product quality. This paper gives an overview on some requirements to be considered for a successful MQL application into industrial practice. Its last part is focused on the evaluation of NDM effects on the gear milling process efficiency, with respect to hob wear, surface quality, cooling effect, and environment protection.  相似文献   

9.
The ball-end milling process is widely used for generating three-dimensional sculptured surfaces with definite curvature. In such cases, variation of surface properties along the machined surface curvatures is not well understood. Therefore, this paper reports the effect of machining parameters on the quality of surface obtained in a single-pass of a ball-end milling cutter with varying chip cross-sectional area. This situation is analogous to generation of free form cavities, pockets, and round fillets on mould surfaces. The machined surfaces show formation of distinct bands as a function of instantaneous machining parameters along the periphery of cutting tool edge, chip compression and instantaneous shear angle. A distinct variation is also observed in the measured values of surface roughness and micro-hardness in these regions. The maximum surface roughness is observed near the tool tip region on the machined surface. The minimum surface roughness is obtained in the stable cutting zone and it increases towards the periphery of the cutter. Similar segmentation was observed on the deformed chips, which could be correlated with the width of bands on the machined surfaces. The sub-surface quality analysis in terms of micro-hardness helped define machining affected zone (MAZ). The parametric effects on the machining induced shear and residual stresses have also been evaluated.  相似文献   

10.
Single-point diamond turning (SPDT) experiments conducted on single-crystal 6-H silicon carbide (SiC) have shown chip formation similar to that seen in the machining of metals. The ductile nature of SiC is believed to be the result of a high-pressure phase transformation (HPPT), which generates a plastic zone of material that behaves in a metallic manner. This metallic behavior is the basis for using AdvantEdge, a metal machining simulation software, for comparison to experimental results.Simulations (2D) were carried out by matching the SPDT experimental conditions, which were conducted at nanometer (nm) depths of cut and varying tool rake angles. The experiments were performed by machining the circumference of the single-crystal wafer, thereby conforming to a 2D orthogonal cut (plunge cuts, or an infeed, achieved the depth of cut, and no cross feed was incorporated).The cutting and thrust forces generated from the experiments under ductile cutting conditions compared favorably with the simulation. As the depth of cut is decreased (250 nm, 100 nm, and 50 nm), the experimental conditions transition from a brittle to ductile behavior, with the 50 nm cuts being dominated by the ductile regime. Thus, the forces from the experiment and the simulations are in much better agreement for the smaller depths of cut, that is, below the critical depth of cut that establishes the ductile-to-brittle transition, as ductile conditions exist in both the simulation and experiments. The differences in the results that do arise are assumed to be primarily due to a springback of the material leading to increased rubbing on the flank face.  相似文献   

11.
The conventional additives in metalworking fluids (MWFs) have effects in improving the machining conditions. However, many additives can lead to environmental contamination and health problems. In this paper, lignin obtained from wood is considered as a new “green” additive in MWFs. Lignin has been used as additives in other areas like pasted lead electrodes and polypropylene/coir composites but has never been applied in cutting fluids. In this paper, lignin is dissolved in 5% conventional MWF aqueous solutions in 8 different concentrations through injection and atomization methods. Then, experiments are conducted to evaluate the effectiveness of lignin containing MWFs in micro-milling operations. The performance is compared with that of 5% conventional cutting fluid in terms of machining forces, tool wears, and burr formations. The results show that the concentration of 0.015% lignin leads to the least cutting forces, tool wear and burrs. The results also show that an appropriate concentration of lignin in MWFs can help to improve the cooling and lubrication performances during machining. The results of this paper thus indicate that lignin has a potential to be used as an additive in metalworking fluids.  相似文献   

12.
Parametric glass milling is presented to machine periodical circular channels on the glass plates for manufacturing micro testing devices. An end mill traverses in the linear motion during the workpiece rotation, which are synchronized by simultaneous control. The glass milling is controlled by 4 parameters in a mathematical model without NC program. Based on the principle of the parametric machining and the effect of the cutter axis inclination on the cutting process, a milling machine was developed to perform the parametric glass milling with an inclined ball end mill. The cutter axis inclination and the actual feed rate are associated with the critical feed rate, the maximum feed rate at which a crack-free surface is finished. As a machining example, a periodical circular channel was machined with a transparent surface by the simultaneous control.  相似文献   

13.
Laser assisted milling (LAMill) of ceramics shows some complicated characteristics such as discontinuous chips, crack formation, propagation and coalescence. In this paper, numerical simulation is conducted to explore the machining mechanism of LAMill. The distinct element method (or discrete element method, DEM) is applied to model the microstructure of a β-type silicon nitride ceramic. Clusters are used to simulate the real grain shape of the silicon nitride ceramic and parallel bonds are employed to represent the connections between intergranular glass phase and grains. Numerical tests (compression, bending and fracture toughness tests) are performed to evaluate the macroproperties of the synthetic material, thus matching the corresponding physical properties of the real silicon nitride. Moreover, a temperature-dependent synthetic DEM specimen is created and then used in simulations of LAMill. The DEM model is validated through comparing the simulation results with the experimental ones in terms of the cutting forces and subsurface damage under different depths of cut. It is shown that the model can successfully predict the subsurface damage in LAMill.  相似文献   

14.
Cost-effective machining of hardened steel components such as a large wind turbine bearing has traditionally posed a significant challenge. This paper presents an approach to machine hardened steel parts efficiently at higher material removal rates and lower tooling cost. The approach involves a two-step process consisting of laser tempering of the hardened workpiece surface followed by conventional machining at higher material removal rates with lower cost ceramic tools to efficiently remove the tempered material. The laser scanning parameters that yield the highest depth of tempered layer are obtained from a kinetic phase change model. Machining experiments are performed to demonstrate the possibility of higher material removal rates and improved tool wear behavior compared to the conventional hard turning process. Tool wear performance, cutting forces, and surface finish of Cubic Boron Nitride (CBN) tools as well as low cost ceramic tools are compared in machining of hardened AISI 52100 steel (~63 HRC). In addition, cutting forces and surface finish are compared for the laser tempering based turning and conventional hard turning processes. Experimental results show the potential benefits of the laser tempering based turning process over the conventional hard turning process.  相似文献   

15.
In this paper, a review of work performed in the area of force modelling in metal cutting processes is presented. Past and present trends are described and criticised to compare their relevance with current requirements. Several approaches are reviewed, such as empirical, mechanistic and analytical models. The models’ ability to predict forces, from rough machining to finish machining, is analysed.  相似文献   

16.
The crystallographic orientation or anisotropy is one of the main microstructural attributes strongly affecting the mechanical properties of materials. It is also an influential parameter to be considered during the manufacturing process especially for ultra-precision machining since it affects part quality, tool performance, and process productivity through material properties. In this study, a prediction toolset constituted of a Viscoplastic Self-Consistent model and machining process mechanics model is used to predict the texture evolution on the machined surface. The VPSC (Viscoplastic Self-Consistent) methodology which uses the mechanisms of slip and twinning that are active in single crystals of arbitrary symmetry was used. For this, an analytical model for the process mechanics is derived to understand the forces and stresses generated by the cutting tool at each workpiece point, then the strain and strain rate to capture the rate at which the material is deforming and finally the crystallographic orientations under various machining conditions. Experiments were performed on the orthogonal cutting of aluminum alloy AA-7075-T651 and the texture results were compared to model predictions.  相似文献   

17.
Many problems such as health and environment issues are identified with the use of cutting fluids (CFs). There has been a high demand for developing new environmentally friendly CFs such as vegetable based cutting fluids (VBCFs) to reduce these harmful effects. In this study, performances of six CFs, four different VBCFs from sunflower and canola oils with different ratios of extreme pressure (EP) additives, and two commercial types of CFs (semi-synthetic and mineral) are evaluated for reducing of surface roughness, and cutting and feed forces during turning of AISI 304L austenitic stainless steel with carbide insert tool. Taguchi’s mixed level parameter design (L18) is used for the experimental design. Cutting fluid, spindle speed, feed rate and depth of cut are considered as machining parameters. Regression analyses are applied to predict surface roughness, and cutting and feed forces. ANOVA is used to determine effects of the machining parameters and CFs on surface roughness, cutting and feed forces. In turning of AISI 304L, effects of feed rate and depth of cut are found to be more effective than CFs and spindle speed on reducing forces and improving the surface finish. Performances of VBCFs and commercial CFs are also compared and results generally show that sunflower and canola based CFs perform better than the others.  相似文献   

18.
A new approach for the machining of tantalum is presented. The new approach is a combination of traditional turning and cryogenically enhanced machining (CEM). In the tests, CEM was used to reduce the temperature at the cutting tool/workpiece interface, and thus reduce the temperature-dependent tool wear to prolong cutting tool life. The new method resulted in a reduction of surface roughness of the tantalum workpiece by 200% and a decrease of cutting forces by approximately 60% in experiments. Moreover, cutting tool life was extended up to 300% over that in the conventional machining.  相似文献   

19.
Sensors capable of providing fast and reliable feedback signals for monitoring and control of existing and emerging machining processes are an important research topic, that has quickly gained academic and industrial interest in recent years. Generally, high-precision machining processes are very sensitive to variation in local machining conditions at the tool–workpiece interface and lack a thorough understanding of fundamental thermomechanical phenomena. Existing sensors to monitor the machining conditions are not suitable for robust in-process control as they are either destructively embedded and/or do not possess the necessary spatial and temporal resolution to monitor local tool internal temperatures during machining at the cutting tip/edge effectively. This paper presents a novel approach for assessing transient tool internal temperature fields in the close vicinity of less than 300 μm of the tool cutting edge. A revised array layout of 10 micro thin film micro thermocouples, fabricated using adapted semiconductor microfabrication methods, has been embedded into polycrystalline cubic boron nitride (PCBN) cutting inserts by means of a modified diffusion bonding technique. Scanning electron microscopy was used to examine material interactions at the bonding interface and to determine optimal bonding parameters. Sensor performance was statically and dynamically characterized. They show good linearity, sensitivity and very fast response time. Initial machining tests on aluminum alloys are described herein. The tests have been performed to demonstrate the functionality and reliability of tool embedded thin film sensors, and are part of a feasibility study with the ultimate goal of applying the instrumented insert in hard machining operations. The microsensor array was used for the acquisition of tool internal temperature profiles very close to the cutting tip. The influence of varying cutting parameters on transient tool internal temperature profiles was measured and discussed. With further study, the described instrumented cutting inserts could provide more valuable insight into the process physics and could improve various aspects of machining processes, e.g. reliability, tool life, and workpiece quality.  相似文献   

20.
The development and implementation of a microstructure-based finite element model for the machining of carbon fiber-reinforced polymer composites is presented. A new approach to interfacial modeling is introduced where the material interface is modeled using continuum elements, allowing failure to take place in either tension or compression. The model is capable of describing the fiber failure mode occurring throughout the chip formation process. Characteristic fiber length in the chips, and machining forces for microstructures with fibers orientated at 0°, 45°, 90°, and 135° are examined. For model validation purposes, the model-based machining performance predictions are compared to the machining responses from a set of orthogonal machining experiments. A parametric study is presented that identifies a robust tool geometry, which minimizes the effects of fiber orientation and size on the machining forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号