首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flexural strength is one of the main criteria in evaluation of the mechanical properties of polymeric joints. The flexural strength of thermoplastics, such as high density polyethylene (HDPE) sheets, is influenced by friction stir welding parameters. The determination of the welding parameters plays an important role in the weld strength. In the present study, the response surface method (RSM) was used as a statistical design of experiment technique to set the optimal welding parameters. The designed tool was consisted of a rotating pin, a stationary shoulder (shoe) and a heating system inside shoe. Rotational speed of the pin, tool traverse speed and shoe temperature were considered as varying parameters. Obtained results show a significant relationship between considered properties and processing parameters through an analysis of variance (ANOVA) study and the response surface method. It was found that welding at a high level of rotational speed and a lower level of tool travel speed increases weld flexural strength by reducing size of defects.  相似文献   

2.
A rotating anvil similar to a pinless friction stir welding (FSW) tool can be applied to friction stir spot welding (FSSW) of thin metal plates. FSSW is a solid-state joining process that is currently being used by automotive manufacturers as an alternative to rivets and traditional resistance spot welding. The principal detractor of this process is the keyhole left by pin extraction, which can be detrimental to the weld strength. A pinless tool can be used to eliminate the keyhole. However, this approach is limited to joining thin sheet (≤1 mm). Using a rotating anvil with the FSSW process permits the joining of thicker cross sections, improves the mechanical strength of the spot weld and reduces the reaction forces on the spot welding frame. A numerical model of the process, tensile shear tests and macrosection analysis are used to evaluate the spot welds.Macrosection and numerical analysis reveals that the material flow between the pinless tool and rotating anvil is complex and unique to this process. It has been found that the use of a rotating anvil for FSSW is a viable means to create quality spot welds in thicker weldments.  相似文献   

3.
Friction stir welding: Process,automation, and control   总被引:1,自引:0,他引:1  
This article provides an introduction to the basic principles of friction stir welding (FSW) as well as a survey of the latest research and applications in the field. The basic principles covered include terminology, material flow, joint configurations, tool design, materials, and defects. Material flow is discussed from both an experimental and a modeling perspective. Process variants are discussed as well, which include self-reacting (SR-FSW), stationary shoulder, friction stir processing (FSP), friction stir spot welding (FSSW), assisted FSW, and pulsed FSW. Multiple aspects of robotic friction stir welding are covered, including sensing, control, and joint tracking. Methods of evaluating weld quality are surveyed as well. The latest applications are discussed, with an emphasis on recent advances in aerospace, automotive, and ship building. Finally, the direction of future research and potential applications are examined.  相似文献   

4.
Friction stir spot welding is performed on thin plates of an aluminum alloy. This paper presents the results on how the number of tool rotations affects the quality of the resulting spot weld. Different combinations of rotation rate and dwell time are investigated. A linear relationship was found to exist between the number of tool rotations completed during the spot weld and the resulting tensile shear strength. Spot welds that only completed 10 rotations were 177% stronger than those created at 50 tool rotations. The energy generated during the welding operation was quantified and also found to have a linear relationship with tensile shear strength. A modified open-loop position control system is proposed that monitors and limits the energy generated during friction stir spot welding by adjusting the dwell time.  相似文献   

5.
In this paper a shared control strategy is presented that allows a skilled operator to identify irregularities that occur during robotic friction stir welding (FSW) and assist the robotic system in producing an appropriate response. Human operators are adept at identifying disturbances; however, the complexity of the friction stir welding process makes it difficult for the operator to respond. While examining the capabilities of shared control in friction stir welding, this paper focuses on responding to defects that are caused by a lack of workpiece material during butt welding, such as gaps. A compensation strategy is presented that combines the human operator's perceptual strengths with an automated procedure for adjustment of the process parameters (i.e. travel angle and plunge depth). Experiments comparing four control strategies are performed while welding 5083-H116 aluminum. Through our experiments we demonstrate that if the FSW control task is appropriately shared between the human operator and the computer control system, the weld quality (strength) can be improved (from 9 ksi to 31 ksi for a gap size of 2.5 mm) as compared with the nominal case in which no corrections are made.  相似文献   

6.
目的研究铝锂合金搅拌摩擦焊焊缝在大气环境中的腐蚀行为。方法采用电化学极化法、质量增加法、扫描电子显微镜、三维体式显微镜几种不同的表征手段对铝锂合金搅拌摩擦焊焊缝在模拟海洋大气环境中的腐蚀行为进行研究。结果焊缝部位存在较为严重的应力腐蚀开裂现象,腐蚀电位比基体部位负移约0.05 V,腐蚀速率比一般基体部位明显增大。结论搅拌摩擦焊虽具有较多优点,在其他领域得到一定应用,但针对铝锂合金在海军飞机方向的应用存在缺陷,不能直接裸露使用。  相似文献   

7.
The present study investigates the effect of tool shoulder profile on the mechanical and tribological properties of friction stir processed AZ31B magnesium alloy. The tool rotational speed and feed rate are the chosen process parameters. The experiments were conducted with 3 level 2 factors full factorial design. The recorded responses were tensile strength, wear losses and corrosion rate. The results were analyzed with the help microstructures of the processed samples. The study reveals that, for concave shoulder tool, the strain hardening effect was playing a major role in determining the properties of the processed materials and for the step shoulder tool, the grain size plays a major role in determining the properties of the processed materials.  相似文献   

8.
Mass reduction of automotive body structures is a critical part of achieving reduced CO2 emissions in the automotive industry. There has been significant work on the application of ultra high strength steels and aluminum alloys. However, the next paradigm is the integrated use of both materials, which poses a challenge of how to join the dissimilar materials. Friction stir forming is a new manufacturing process for joining dissimilar materials. The concept of this process is stir heating one material and forming it into a mechanical interlocking joint with the second material. In this research the process was experimentally analyzed in a position controlled robotic friction stir welding machine between aluminum and steel workpieces. New tool geometries were evaluated toward the goal of optimizing joint strength. The significant process parameters were identified and their optimized settings for the current experimental conditions defined using a design of experiments methodology. A scanning electron microscope was used to characterize the bonding and joint structure for single and multi-pin configurations. Two failure modes, aluminum sheet peeling and bonding delamination, i.e. braze fracture, were identified. It was found that the presence of zinc coating on the steel and overall joint geometry greatly affected the joint strength. The aluminum–zinc braze joint appears to be the largest contributor to joint strength for the single-pin joint configuration. The multi-pin geometry enabled a distribution of load to the four pins following fracture of the braze for increased joint toughness and ductility. Thus, the FSF method has been shown to exhibit potential for joining of aluminum to steel.  相似文献   

9.
The objective of this research is to investigate the mechanical properties including bonding, tensile strength, and impact resistance of pure copper welded using friction stir welding (FSW) method and compare them with that of tungsten inert gas (TIG) welding. Micro-hardness tests are performed on pure copper, TIG welded copper and FSW welded copper to determine the effect of heat on the hardness of welded coppers. Tensile strength tests and notch tensile strength tests are performed to determine the mechanical properties of different weld process.In this experiment, it is found that the notch tensile strength and the notch strength ratio for FSW (212 MPa, 1.10) are significantly higher than those (190 MPa, 1.02) of TIG welding. For the impact tests, the weld zone and heat-affected zone energy absorption values for FSW (2.87 J, 2.25 J) are higher than those (1.32 J, 0 J) of TIG welding. XRD tests are performed to determine components of copper before and after welding process for TIG and FSW.  相似文献   

10.
By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials.  相似文献   

11.
The elliptical vibration cutting (EVC) technique has been found to be a promising technique for ultraprecision machining of various materials. In each overlapping EVC cycle, the thickness of cut (TOC) of work material, and the tool velocity get continuously varied. These two inherent phenomena, in fact, introduce transient characteristics into its cutting mechanics, which are considered to be different from the one applied for conventional cutting technique. Recently, a few theoretical models have been developed to understand the material removal mechanism with the EVC technique; however, in those studies, the transient phenomena were not considered. In the present research, an analytical force model for the orthogonal EVC process was developed in order to fully understand the EVC mechanism, and to more accurately predict the transient cutting force values. Three important factors: (i) transient TOC, (ii) transient shear angle, and (iii) transition characteristic of friction reversal were investigated and analyzed mainly based on geometric modeling and the Lee and Shaffer's slip-line solution. Mathematical evaluation shows that they may have significant influence on EVC process, and thus on its output performance. In order to validate the proposed force model, a series of low-frequency orthogonal EVC tests were conducted. The experimental transient cutting force values were compared with the predicted values calculated using the proposed model, and they are found to be in a good agreement with each other.  相似文献   

12.
This paper presents a comprehensive survey of welding processes used to deposit wear resistant overlays. It is based on both literature review and research work performed at the Canadian Centre for Welding and Joining. The focus is on the two most popular material systems used for wear resistant overlays: nickel-base with the addition of tungsten carbide particles, and iron-base in which chromium carbides of the form M7C3 nucleate during solidification. The processes surveyed in detail are plasma transfer arc welding, submerged arc welding, laser beam welding, gas metal arc welding-related processes using tubular wires, oxy-acetylene flame brazing, and the still-experimental applications of friction stir processing. Cost and market are key factors influencing technical decisions on wear protection overlays, but the information is scarce and often tightly guarded. An informal survey from our industrial partners is included.  相似文献   

13.
In recent years, demands for miniature components have increased due to their reduced size, weight and energy consumption. In particular, brittle materials such as glass can provide high stiffness, hardness, corrosion resistance and high-temperature strength for various biomedical and high-temperature applications. In this study, cutting properties and the effects of machining parameters on the ductile cutting of soda-lime glass are investigated through the nano-scale scratching process. In order to understand the fundamentals of the material removal mechanism at the atomic scale, such as machined surface quality, cutting forces and the apparent friction, theoretical investigation along with experimental study are needed. Scribing tests have been performed using a single crystal diamond atomic force microscope (AFM) probe as the scratching tool, in order to find the cutting mechanism of soda-lime glass in the nano-scale. The extended lateral force calibration method is proposed to acquire accurate lateral forces. The experimental thrust and cutting forces are obtained and apparent friction coefficients are deduced. The effects of feed rates and the ploughing to shearing transition of soda-lime glass have been investigated.  相似文献   

14.
In an attempt to map the residual stress distributions after friction stir welding of copper canisters, a three-dimensional thermo-mechanical model has been formulated by coupling heat transfer and elasto-plasticity analyses. The transient temperature field around the tool is simulated by a moving heat source. The simulation shows that the residual stress distribution in a thick-wall copper canister is sensitive to the circumferential angle and asymmetrical to the weld line. Both tensile and compressive stresses emerge along the weld line and its vicinity. The maximum tensile stress appears in the circumferential direction on the outer surface. The maximum tensile stress, whether it is predicted by the finite element method or measured by the hole-drilling technique and the X-ray diffraction method, does not exceed 50 MPa in general.  相似文献   

15.
为研究超级钢闪光对焊闪光阶段焊件的温度场分布 ,建立了轴对称有限元模型。运用单元死活技术解决闪光时液体过梁爆破引起物质烧损的模拟问题 ,提出了闪光焊过程中电热耦合作用的模拟方法。考虑单元死活的有限元分析结果与试验结果更加吻合 ,为选择和优化闪光焊焊接参数以及为闪光焊过程顶锻阶段的热力耦合过程的模拟提供了有效的分析手段  相似文献   

16.
常青 《环境科学学报》2020,40(11):3811-3820
疏水絮凝是天然水中经常发生的现象,也是水处理中常被利用的原理.而疏水作用力则是引起疏水絮凝的最主要原因,具有重要的科学意义和应用价值.在过去30多年里,科学家们从实验测定、数值模拟及理论研究3个方面做了大量的研究,使人们对疏水作用力有了一定的认识,但由于问题的复杂性及研究所具有的高难度,目前疏水作用力的理论仍不够完善.为有助于进一步研究,本文综述了疏水作用力的一些特性及影响因素,如疏水作用力的实验规律、疏水作用的距离范围、疏水作用力的粒度界限、表面接触角对疏水作用力的影响、电解质对疏水作用力的影响及温度对疏水作用力的影响等.对大量文献的分析归纳表明,实验规律有单指数函数模型、双指数函数模型及幂函数模型,作用距离范围分为短程作用力及长程作用力,微粒半径大于临界半径时才可产生疏水作用力,疏水作用力随接触角的增大而增大,电解质对疏水作用力基本无影响,关于温度的影响,迄今尚有不同的看法和争论,还需更进一步的研究.  相似文献   

17.
The viability of using 316L stainless steel in the ultrasonic consolidation process was examined in this work. Ultrasonic consolidation is an additive, free-form manufacturing process that employs ultrasonic welding and machining to form a part. The process ultrasonically joins layers of metal together by welding them one at a time. Once four layers of metal foil are welded together, welding is suspended and the system machines the part outline, and repeats this cycle until a component is completed. Experiments were conducted to determine the feasibility and processing parameters for ultrasonically welding stainless steel. Mechanical testing and optical microscopy were conducted. 316L stainless steel was successfully welded. Increasing welding amplitude and decreasing welding speed were the most effective way to increase weld peel strength. Unlike work in aluminum alloys, these experiments found no relationship between horn force and peel strength. Rough processing windows for ultrasonically welding 316L were identified.  相似文献   

18.
Chatter suppression in machining processes results in more material removal rate, high precision and surface quality. In this paper, two control strategies are developed to suppress chatter vibration in the turning process including a worn tool. In the first stage, a sinusoidal spindle speed variation around the mean speed is modulated to disturb the regenerative mechanism. The optimal amplitudes of the speed modulations are found based on a genetic algorithm such that the input energy to the turning process is minimized. In the second stage, to improve the response of the system which is associated with small ripples under the steady state condition, an adaptive controller is designed. In this stage, the provided external force (e.g., by a piezo-actuator) is the input variable. Results are provided for each control strategy. It is shown that if both control approaches are applied simultaneously, chatter vibration is suppressed in less time without any ripples at the steady state condition.  相似文献   

19.
常青 《环境科学学报》2018,38(10):3787-3796
1982年Israelachvili和Pashley在Nature期刊上报道了以实验测得的疏水作用力,这一发现使当时的学者们倍感兴奋,激起了一个持续不断的研究.经过30多年的研究,疏水作用力被证明客观存在,并被众多科学家所认可.根据这一发现,经典的DLVO理论应补充疏水作用力,成为扩展的DLVO理论,经典的絮凝理论也应包括疏水絮凝的贡献.迄今疏水絮凝在矿物分选领域已取得了巨大成功,但在水处理领域尚缺乏认识和研究.本文综述了疏水作用力及疏水絮凝的发现,探讨了疏水作用力的热力学解释和微观机理,指出了水处理技术中涉及到的一些疏水絮凝原理,认为水处理工作者应大力开展疏水絮凝的研究,以疏水絮凝的理论进一步推动水处理科学技术的发展.  相似文献   

20.
The characteristic surface properties and internal workpiece transformations formed during the Abrasive Waterjet (AWJ) cutting process influences the formability and fatigue performance of steel cut-edges. This relatively established cutting technology is used in industry to generate specialist low production components, which may undergo continual loading cycles under operational service conditions. The fatigue performance of AWJ cut-edges can be critical since individual notch defects produced by the cutting process can act as initiation sites from where fatigue cracks can propagate. Due to the increased sensitivity of high strength structural steels to cut-edge fatigue, AWJ cut-edge defects have an ever more significant influence on fatigue performance. The relationship between the traverse cutting speed and the influence on the resulting properties of the cut-edge has been the critical area of investigation. The affects of traverse cutting speed on the surface roughness properties and cut-edge hardening through a process of plastic deformation of grains in the near edge region were observed to be influenced by the traverse cutting speed. It is these characteristic factors that were determined to influence the cut-edge ductility and fatigue performance of steel components. It is a combination of the AWJ properties that produces cut-edges, which are positive for the Hole Expansion Capacity (HEC) but negative for stress life and cyclic stress strain life fatigue performance of AWJ cut high strength steels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号