首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This article introduces the basic principles of plasma arc welding (PAW) and provides a survey of the latest research and applications in the field. The PAW process is compared to gas tungsten arc welding, its process characteristics are listed, the classification is made, and two modes of operation in PAW, i.e., melt-in and keyhole, are explained. The keyhole mechanism and its influencing factors are introduced. The sensing and control methodologies of the PAW process are reviewed. The coupled behaviors of weld pool and keyhole, the heat transfer and fluid flow as well as three-dimensional modeling and simulation in PAW are discussed. Finally, a novel PAW process variant, the controlled pulse keyholing process and the corresponding experimental system are introduced.  相似文献   

2.
Laser welding is used for joining advanced high strength steels (AHSS) to improve formability and performance. In this paper, the geometric variability observed in the fusion zones and heat affected zones of several combinations of AHSS (different types, coatings and thicknesses), which were butt welded using a Trumpf TRUDISK 6000® Yb:YAG laser beam, is presented. The surface texture parameters such as roughness and waviness of laser welds were also measured and correlated with geometric variability. Results indicate that although high quality welds with minimal defects can be obtained using the Yb:YAG laser welding process, there is considerable variation in both the shape and the dimensions of weld zones. The variability increased with an increase in thickness differentials between the sheets being welded. Analysis of the top of the weld surfaces also suggested that aluminum coating on USIBOR samples contributes significantly to increased roughness. An increase in laser power coupled with corresponding increase in welding speed did not impact variability. A fair correlation between the surface roughness and weld region variability exists, although this needs further study.  相似文献   

3.
A rotating anvil similar to a pinless friction stir welding (FSW) tool can be applied to friction stir spot welding (FSSW) of thin metal plates. FSSW is a solid-state joining process that is currently being used by automotive manufacturers as an alternative to rivets and traditional resistance spot welding. The principal detractor of this process is the keyhole left by pin extraction, which can be detrimental to the weld strength. A pinless tool can be used to eliminate the keyhole. However, this approach is limited to joining thin sheet (≤1 mm). Using a rotating anvil with the FSSW process permits the joining of thicker cross sections, improves the mechanical strength of the spot weld and reduces the reaction forces on the spot welding frame. A numerical model of the process, tensile shear tests and macrosection analysis are used to evaluate the spot welds.Macrosection and numerical analysis reveals that the material flow between the pinless tool and rotating anvil is complex and unique to this process. It has been found that the use of a rotating anvil for FSSW is a viable means to create quality spot welds in thicker weldments.  相似文献   

4.
The temperature distribution and residual stresses for a GTAW circumferential butt joint of AISI 304 stainless steel using numerical simulation have been evaluated. For evaluation of weld induced residual stresses, the analysis of heat source fitting was carried out with heat inputs ranging from 200 to 500 J/mm to arrive at optimal heat input for obtaining proper weld penetration and heat affected zone (HAZ). For this chosen heat input, the influence of different weld speeds and powers on the temperature distribution and the residual stresses is studied. The heat source analysis revealed the best choice of heat input as 300 J/mm. The residual stresses on the inner and outer surfaces, and along the radial direction were computed. Increase in temperature distribution as well as longitudinal and circumferential residual stresses was observed with the increase in weld speed and power. The validity of the results obtained from numerical simulation is demonstrated with full scale shop floor welding experiments.  相似文献   

5.
In an attempt to map the residual stress distributions after friction stir welding of copper canisters, a three-dimensional thermo-mechanical model has been formulated by coupling heat transfer and elasto-plasticity analyses. The transient temperature field around the tool is simulated by a moving heat source. The simulation shows that the residual stress distribution in a thick-wall copper canister is sensitive to the circumferential angle and asymmetrical to the weld line. Both tensile and compressive stresses emerge along the weld line and its vicinity. The maximum tensile stress appears in the circumferential direction on the outer surface. The maximum tensile stress, whether it is predicted by the finite element method or measured by the hole-drilling technique and the X-ray diffraction method, does not exceed 50 MPa in general.  相似文献   

6.
Tungsten inert gas-metal inert gas (TIG-MIG) hybrid welding process is an effective way to improve welding productivity and quality due to advantages of the two processes. Mathematical analysis is crucial to fundamentally understand this synergetic welding process. In this study, based on experimental visualization of arc behaviors, some assumptions are proposed to deduce adaptive plane and volumetric heat source models separately for each involved welding method first. The influence of torch angles on distribution of temperature and geometry of weld bead are calculated and compared with experimental results. It shows that this developed algorithm of heat source can be employed to accurately predict welding process whether the electrode gun is slanted backward or forward to the direction of welding. Then TIG-MIG hybrid welding process is simulated and analyzed without considering the attractive or repulsive force of two arcs. The characteristic of TIG-MIG welding process is discussed compared to single MIG. It lays the foundation for the further research on the interaction of the two arcs during TIG-MIG hybrid welding.  相似文献   

7.
目的 研究不同厚度的7050-T7451铝合金板材疲劳性能表现出的厚度效应。方法 试验件从3种厚度规格(75、150、203mm)板材的不同厚度位置取样,采用成组试验法进行3级应力–疲劳试验。分析试验数据,发现并总结材料疲劳性能随板材厚度及取样厚度位置变化的演化规律。结果 所有厚度规格板材的表面层材料的疲劳性能均为最优,且不同厚度规格板材表面层材料的疲劳性能差异较小。当板材的厚度较薄(75 mm)时,随着取样厚度位置变化,材料的疲劳性能差异较小;当板材的厚度较厚(150、203 mm)时,从表面层到中心层的材料疲劳性能呈非线性变化趋势,先变弱、后增强,疲劳寿命105循环对应的最大应力降低幅度最大为21%左右。随着板材厚度的增加,疲劳性能最差的厚度层材料,疲劳寿命105循环对应的最大应力降低了20%左右。结论 随着板材的厚度增加,7050-T7451铝合金板材疲劳性能的厚度效应变得越来越强,即疲劳性能在厚度方向的不均匀性越来越明显。工程师应在工程设计中考虑7050-T7451铝合金疲劳性能厚度效应对结构疲劳强度的影响。  相似文献   

8.
Friction stir spot welding is performed on thin plates of an aluminum alloy. This paper presents the results on how the number of tool rotations affects the quality of the resulting spot weld. Different combinations of rotation rate and dwell time are investigated. A linear relationship was found to exist between the number of tool rotations completed during the spot weld and the resulting tensile shear strength. Spot welds that only completed 10 rotations were 177% stronger than those created at 50 tool rotations. The energy generated during the welding operation was quantified and also found to have a linear relationship with tensile shear strength. A modified open-loop position control system is proposed that monitors and limits the energy generated during friction stir spot welding by adjusting the dwell time.  相似文献   

9.
风向对街道峡谷内污染物扩散的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
采用Fluent软件,选用RNG k-ε湍流模型,对长高比为5的街道峡谷(简称街谷)在0°~90°风向下流场和污染物浓度场进行了数值模拟. 结果表明: 0°~75°风向时,街谷内流场呈明显的三维特性,90°风向时,流动表现出中长街谷的二维特点;风向对街谷内壁面污染物浓度的分布有显著影响,90°风向下的街谷壁面浓度最大,其次是45°风向,其余风向下的相对较小,污染物浓度的计算值与风洞试验值在趋势上吻合较好;壁面污染物浓度的分布由街谷内长度方向漩涡、来流冲角产生的进口回流及沿长度方向的流动所决定,壁面浓度的分布差异均可从附近的流场获得解释. 街道峡谷内长度方向的漩涡模拟过强会导致地面附近污染物浓度的计算值偏离试验值.   相似文献   

10.
Modified 9Cr-1Mo (P91) steel is widely used in the construction of power plant components. In the present study, a comparative study on influence of activated flux tungsten inert gas (A-TIG), and gas tungsten arc (GTA) welding processes on the microstructure and the impact toughness of P91 steel welds was carried out. P91 steel welds require a minimum of 47 J during the hydrotesting of vessels as per the EN1557: 1997 specification. Toughness of P91 steel welds was found to be low in the as-weld condition. Hence post-weld heat treatment (PWHT) was carried out on weld with the objective of improving the toughness of weldments. Initially as per industrial practice, PWHT at 760 °C – 2 h was carried out in order to improve the toughness of welds. It has been found that after PWHT at 760 °C – 2 h, GTA weld (132 J) has higher toughness than the required toughness (47 J) as compared with A-TIG weld (20 J). The GTA weld has higher toughness due to enhanced tempering effects due to multipass welding, few microinclusion content and absence of δ-ferrite. The A-TIG weld requires prolonged PWHT (i.e. more than 2 h at 760 °C) than GTA weld to meet the required toughness of 47 J. This is due to harder martensite, few welding passes that introduces less tempering effects, presence of δ-ferrite (0.5%), and more alloy content. After PWHT at 760 °C – 3 h, the toughness of A-TIG weld was improved and higher than the required toughness of 47 J.  相似文献   

11.
拼焊板在盒形件拉伸过程中的焊缝移动研究   总被引:2,自引:0,他引:2  
分析了激光拼焊板在冲压成形过程中焊缝移动的基本原理 ,推导了单向拉伸情况下焊缝移动的基本公式 ;概述了拼焊板数值模拟建模的基本方法 ,并运用商业有限元软件AutoForm对盒形件拉伸过程中的焊缝移动进行了预测 ,将分析结果与国外实验结果进行对比 ,得出初始焊缝位置对焊缝移动的影响的基本规律  相似文献   

12.
Laser cutting of alumina tiles is carried out, and the temperature and stress fields developed in the cutting section are predicted numerically using ABAQUS finite element code. The morphological changes along the cut edge surfaces are examined using the optical and scanning electron microscopes. The residual stress formed in the cutting section is obtained after incorporating the XRD technique. The residual stress predicted is compared with the experimental data. It is found that the residual stress predicted agrees well with the experimental results. The dross attachment at the kerf exit is observed, which is associated with the high melting temperature of the workpiece.  相似文献   

13.
生物滴滤床降解有机废气净化效率的理论模型   总被引:2,自引:0,他引:2       下载免费PDF全文
将生物膜滴滤塔内的多孔填料简化为壁面覆盖有生物膜的平行平板通道,建立了一个净化低浓度有机废气的理论模型.该模型首先运用两相流理论获得了通道内液膜厚度,然后通过污染物在气相、液相的质量组分方程,结合生物膜内的传质与不考虑氧限制的生化反应动力学方程,获得了污染物在液相和生物膜中浓度分布的近似分析解,最终得到污染物在气相中沿塔高的浓度分布及废气净化效率.模型的理论预测值与生物膜滴滤塔净化低浓度甲苯废气的实验结果基本吻合.  相似文献   

14.
The evolution of mechanical components into smaller size generating a need for microwelding of these components using laser which offers better control as compared to arc and plasma processing. The present article describes the numerical simulation of laser micro-spot welding using finite element method. A two dimensional Gaussian distributed surface heat flux as a function of time is used to perform a sequentially coupled thermal and mechanical analysis. The model is used for simulating laser micro-spot welding of stainless steel sheet under different power conditions and configurations of mechanical constraints. The temperature dependent physical properties of SS304 have been considered for the simulation and an isotropic strain hardening model has been used. The simulated weld bead dimensions have been compared with experimental results and temperature profiles have been calculated. The maximum deformation of 0.02 mm is obtained with maximum laser power of 75 W. The thermal stress is more inducing factor to temperature induced residual stresses and plastic strain as compared to mechanical constraints. The plastic strain changes significantly by displacement constraints as compared to residual stress.  相似文献   

15.
In the northernmost region of Japan (Hokkaido Island), earlier onsets of thick snowcover in recent years (post 1980) have reduced the penetration depth of soil frost, resulting in over-winter survival of unharvested small potato (Solanum tuberosum) tubers that emerge as weeds in the spring in rotation crop fields. To prevent the occurrence of potato weeds, a method was developed to manipulate soil-frost depths by artificially controlling snowcover thickness, guided by a simple numerical model that simulates soil freezing-thawing processes using daily mean air temperature and snowcover thinckness as input variables. The method involves removal of snowcover to expose the soil surface in the beginning of winter until the soil freezes to a sufficient depth. After that time, snow is deposited back or allowed to accumulate naturally to prevent further penetration of frost, which may cause undesirable delay in the seeding of spring crops. Field trials indicated that the model predicted frost depths within several centimeters of observed values, when measured temperature and snowcover thickness were used as model input. Based on the field and laboratory data, a soil temperature of −3°C is necessary for complete elimination of potato tubers. To achieve this temperature in potato-burial zones without causing excessive freezing, an optimal frost depth is 0.3 to 0.4 m. The method is being adopted by progressive potato producers in the region, who use tractor-mounted snow ploughs to manipulate snowcover over a large scale. This is an emerging new technology for agricultural adaptation to climate variability.  相似文献   

16.
目的 研究药型罩结构参数对所形成的聚能射流在水中运动的影响,改进水中聚能射流的运动特性。方法 采用多物质单元ALE法就锥形罩射流对水介质的侵彻进行数值模拟,分析锥形装药结构中药型罩锥角和厚度对所形成的聚能射流侵彻水时运动参数的影响。结果 锥形罩锥角大小及药型罩厚度对聚能射流在水中的形状、射流速度、加速度等有着明显的影响。侵彻体进入水中10 cm后,药型罩的锥角从30°增加到150°的过程中,剩余速度先增大、后减小,在90°时达到最高。药型罩厚度为1.5~4mm时,剩余速度变化起伏小;厚度为4~6 mm时,剩余速度开始大幅下降。结论 当锥角为90°时,罩厚为4 mm的药型罩所形成的射流在水中表现最好,形成的射流侵彻深度最长,侵彻水介质10 cm后的剩余速度最大,存速能力最强。  相似文献   

17.
为了改善印刷线路板热解过程中的传热性能、提高废弃印刷线路板热解效率和产率、减少热解过程对环境的二次污染,本文设计并搭建了一套固定床热解实验装置,在高温氮气渗流条件下对3种不同尺寸废弃印刷线路板颗粒料层的热解过程进行了对比实验;测试了颗粒料层热解过程沿轴向和径向的温度分布,分析了线路板颗粒尺寸对物料层温度场和对热解区域迁移速度的影响,阐明了沿热解炉高度方向物料温度参数随时间的变化特征,揭示了热解区域和热解状态对于沿轴向的温升速率和温度梯度的影响规律.结果表明:较大颗粒料层的热解区域纵向迁移速度要快于小颗粒料层,当颗粒尺寸分别为1.5、2.5和3.5 cm时,热解区域的纵向迁移速度分别为0.47、0.50和0.63 m·h~(-1);热解区域和热解状态对于沿轴向的温升速率和温度梯度有显著影响;废弃印刷线路版热解过程的能源利用效率较低,只有29.50%~37.13%,主要损失为热解装置和物料的蓄热损失.研究结果对印刷线路板热解装置的设计和运行具有重要的指导意义.  相似文献   

18.
The objective of this study was to investigate the use of capacitor discharge welding (CDW) as a suitable technique for joining metal single crystals by studying the effect of CDW on the microstructure of single-crystal copper. According to solidification theory, single-crystal formation requires high thermal gradients and moderate solidification rates. Therefore, an initial analysis was performed to determine if single-crystal CDW would result in a single-crystal microstructure. Joints were made using samples with joining surfaces at 0°, 15°, 30°, and 45° to the (111) crystal plane. Results show that single-crystal copper can be joined using CDW without the formation of voids and grain boundaries at the weld centerline. Average etch-pit densities after CDW are lower than those reported in the literature for single-crystal copper, suggesting minimal microstructural disruption. Crystal orientation does not seem to have any effect on fusion zone thickness or etch-pit density. Further work is needed to evaluate the effect of crystal orientation on void content in single-crystal copper welds made by CDW.  相似文献   

19.
Pulsed laser spot welding is used in the manufacture of many goods. Because weak joints can lead to product defects, it is important to monitor and control the joint strength precisely. This paper introduces a method to estimate the joint strength of spot welds during the welding process. A point infrared sensor is used to measure temporal radiation on the top face of the spot weld. Because variable measuring conditions affect the radiation power, a scale-free radiation feature is extracted from the measured radiation and used as a monitoring criterion. An artificial neural network (ANN) uses this feature to estimate joint strength. In experiments, significant welding parameters are varied within a controllable range, and 640 weld parts are used for ANN learning. The correlation coefficient between the estimated and measured strength is more than 0.98 for learned parts. Another 180 weld parts are used to appraise the efficiency of the learned ANN, and the mean square error of estimation is 0.78 kgf.  相似文献   

20.
Double-electrode gas metal arc welding (DE-GMAW) is a novel welding process in which a second electrode, non-consumable or consumable, is added to bypass part of the wire current. The bypass current reduces the heat input in non-consumable DE-GMAW or increases the deposition rate in consumable DE-GMAW. The fixed correlation of the heat input with the deposition in conventional GMAW and its variants is thus changed and becomes controllable. At the University of Kentucky, DE-GMAW has been tested/developed by adding a plasma arc welding torch, a GTAW (gas tungsten arc welding) torch, a pair of GTAW torches, and a GMAW torch. Steels and aluminum alloys are welded and the system is powered by one or multiple power supplies with appropriate control methods. The metal transfer has been studied at the University of Kentucky and Shandong University resulting in the desirable spray transfer be obtained with less than 100 A base current for 1.2 mm diameter steel wire. At Lanzhou University of Technology, pulsed DE-GMAW has been successfully developed to join aluminum/magnesium to steel. At the Adaptive Intelligent Systems LLC, DE-GMAW principle has been applied to the submerged arc welding (SAW) and the embedded control systems needed for industrial applications have been developed. The DE-SAW resulted in 1/3 reduction in heat input for a shipbuilding application and the weld penetration depth was successfully feedback controlled. In addition, the bypass concept is extended to the GTAW resulting in the arcing-wire GTAW which adds a second arc established between the tungsten and filler to the existing gas tungsten arc. The DE-GMAW is extended to double-electrode arc welding (DE-AW) where the main electrode may not necessarily to be consumable. Recently, the Beijing University of Technology systematically studied the metal transfer in the arcing-wire GTAW and found that the desired metal transfer modes may always be obtained from the given wire feed speed by adjusting the wire current and wire position/orientation appropriately. A variety of DE-AW processes are thus available to suit for different applications, using existing arc welding equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号