首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanism of Cu(Ⅱ) adsorption inhibition on biochar by its aging process   总被引:13,自引:0,他引:13  
Biochar exposed in the environment may experience a series of surface changes, which is called biochar aging. In order to study the effects of biochar aging on Cu(Ⅱ) adsorption, we analyzed the surface properties before and after biochar aging with scanning electron microscopy(SEM) coupled to an energy-dispersive X-ray spectrometer(EDX) and diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS), and then explored the influence of the aging process on Cu(Ⅱ) adsorption by batch experiments. After the aging process, the oxygen concentration, phenolic hydroxyl groups, aromatic ethers and other oxygen-containing functional groups on the biochar surface increased, while carboxyl groups slightly decreased. Thus, over a range of pH, the cation exchange capacity(CEC) and adsorption capacity of Cu(Ⅱ) on the aged biochar were smaller than those of new biochar,indicating that when biochar is incubated at constant temperature and water holding capacity in the dark, the aging process may inhibit Cu(Ⅱ) adsorption. Meanwhile, the dissociation characteristics of oxygen-containing functional groups changed through the aging process, which may be the mechanism by which the biochar aging process inhibits the Cu(Ⅱ) adsorption. Carboxyl groups became more easily dissociated at low pH(3.3–5.0),and the variation of maximum adsorption capability(qm) of Cu(Ⅱ) on the old biochar was enlarged. Phenolic hydroxyl groups increased after the aging, making them and carboxyl groups more difficult to dissociate at high pH(5.0–6.8), and the variation of qmof Cu(Ⅱ) on the aged biochar was reduced.  相似文献   

2.
Study on determination of environmental pollutants (nitrophenols)   总被引:1,自引:0,他引:1  
Studyondeterminationofenvironmentalpolutants(nitrophenols)YuYong,ZhangZhenman,PanXunxi,LiChanglin,HouHuiqiEnvironmentalScienc...  相似文献   

3.
Pyrolysis has the potential of transforming waste into valuable recyclable products. Pyrolytic char(PC) is one of the most important products from the pyrolysis of used tires. One of the most significant applications for pyrolytic char recovered is used for the removal of Cr(Ⅵ) in the wastewater effluent to control waste by waste. The surface chemistry properties of surface element distribution / concentration and chemical structure were examined for the pyrolytic char and the commercial activated carbon(CAC) respectively. The results showed that surfaces of PC possesses a large amount of ester and hydrocarbon graft, whereas there are mainly carbon functional components of C-OH, C=O and COOH on the surface of CAC. Therefore the surface electronegativity of PC is lower than that of CAC in the water. The repulsive interactions between the surfaces of PC and the negatively charged Cr(Ⅵ) ion are weaker than that of CAC, which results in an intensification of the adsorption process by the utilization of PC. The adsorption isotherms of Cr(Ⅵ) ion on the two kinds of carbons were determined experimentally. The larger adsorption amount on the PC in the case of Cr(Ⅵ) may be attributed mainly to its special surface micro-chemical environment. The mechanism of the removal Cr(Ⅵ) from aqueous solution was assumed to be the integration of adsorption and redox reaction. The adsorption was the rate-controlled step for Cr(Ⅵ) removal. The adsorption of Cr(Ⅵ) has been identified as pseudo-second- order kinetics. The rate constants of adsorption have been evaluated.  相似文献   

4.
Mg–Al–Cl layered double hydroxide(Cl-LDH) was prepared to simultaneously remove Cu(Ⅱ)and Cr(VI) from aqueous solution. The coexisting Cu(Ⅱ)(20 mg/L) and Cr(VI)(40 mg/L) were completely removed within 30 min by Cl-LDH in a dosage of 2.0 g/L; the removal rate of Cu(Ⅱ) was accelerated in the presence of Cr(VI). Moreover, compared with the adsorption of single Cu(Ⅱ) or Cr(VI), the adsorption capacities of Cl-LDH for Cu(Ⅱ) and Cr(VI) can be improved by 81.05% and 49.56%, respectively, in the case of coexisting Cu(Ⅱ)(200 mg/L) and Cr(VI)(400 mg/L). The affecting factors(such as solution initial p H, adsorbent dosage, and contact time) have been systematically investigated. Besides, the changes of p H values and the concentrations of Mg~(2+) and Al~(2+)in relevant solutions were monitored. To get the underlying mechanism, the Cl-LDH samples before and after adsorption were thoroughly characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. On the basis of these analyses, a possible mechanism was proposed. The coadsorption process involves anion exchange of Cr(VI) with Cl-in Cl-LDH interlayer, isomorphic substitution of Mg~(2+) with Cu~(2+), formation of Cu_2Cl(OH)_3precipitation, and the adsorption of Cr(VI) by Cu_2Cl(OH)_3. This work provides a new insight into simultaneous removal of heavy metal cations and anions from wastewater by Cl-LDH.  相似文献   

5.
Mg–Al–Cl layered double hydroxide (Cl-LDH) was prepared to simultaneously remove Cu(II) and Cr(VI) from aqueous solution. The coexisting Cu(II) (20 mg/L) and Cr(VI) (40 mg/L) were completely removed within 30 min by Cl-LDH in a dosage of 2.0 g/L; the removal rate of Cu(II) was accelerated in the presence of Cr(VI). Moreover, compared with the adsorption of single Cu(II) or Cr(VI), the adsorption capacities of Cl-LDH for Cu(II) and Cr(VI) can be improved by 81.05% and 49.56%, respectively, in the case of coexisting Cu(II) (200 mg/L) and Cr(VI) (400 mg/L). The affecting factors (such as solution initial pH, adsorbent dosage, and contact time) have been systematically investigated. Besides, the changes of pH values and the concentrations of Mg2+ and Al3+ in relevant solutions were monitored. To get the underlying mechanism, the Cl-LDH samples before and after adsorption were thoroughly characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. On the basis of these analyses, a possible mechanism was proposed. The coadsorption process involves anion exchange of Cr(VI) with Cl in Cl-LDH interlayer, isomorphic substitution of Mg2+ with Cu2+, formation of Cu2Cl(OH)3 precipitation, and the adsorption of Cr(VI) by Cu2Cl(OH)3. This work provides a new insight into simultaneous removal of heavy metal cations and anions from wastewater by Cl-LDH.  相似文献   

6.
Pyrolysis has the potential of transforming waste into valuable recyclable products. Pyrolytic char (PC) is one of the most important products from the pyrolysis of used tires. One of the most significant applications for pyrolytic char recovered is used for the removal of Cr( Ⅵ ) in the wastewater effluent to control waste by waste. The surface chemistry properties of surface element distribution/concentration and chemical structure were examined for the pyrolytic char and the commercial activated carbon(CAC) respectively. The results showed that surfaces of PC possesses a large amount of ester and hydrocarbon graft, whereas there are mainly carbon functional components of C-OH, C=O and COOH on the surface of CAC. Therefore the surface electronegativity of PC is lower than that of CAC in the water. The repulsive interactions between the surfaces of PC and the negatively charged Cr(Ⅵ ) ion are weaker than that of CAC,which results in an intensification of the adsorption process by the utilization of PC. The adsorption isotherms of Cr( Ⅵ ) ion on the two kinds of carbons were determined experimentally. The larger adsorption amount on the PC in the case of Cr( Ⅵ ) may be attributed mainly to its special surface micro-chemical environment. The mechanism of the removal Cr( Ⅵ ) from aqueous solution was assumed to be the integration of adsorption and redox reaction. The adsorption was the rate-controlled step for Cr( Ⅵ ) removal. The adsorption of Cr( Ⅵ )was identified as pseudo-second-order kinetics. The rate constants of adsorption were evaluated.  相似文献   

7.
All-solid-state Z-scheme photocatalysts, containing Cu2O, TiO2 (rutile), and Au as the electron mediator, were prepared and applied to the reduction of Cr(VI) in aqueous solutions. The Cu2O–Au–TiO2 composites were prepared by loading Au core–Cu2O shell hemisphere particles on TiO2 (rutile) nanorods using a two-step photocatalytic deposition process. Under ultraviolet–visible (UV–vis) light illumination, the Cu2O–Au–TiO2 composites exhibited higher photocatalytic Cr(VI) reduction activities than those exhibited by single TiO2 (rutile) and Cu2O. In this reaction, a precipitate containing Cr, which was considered to be Cr(OH)3, was deposited site-selectively on the Au core–Cu2O shell particles of the composites, indicating that the reduction site of the composite was Cu2O, and the reaction proceeded according to the Z-scheme. The Cu2O–Au–TiO2 composites also exhibited photocatalytic activity under visible light illumination. The oxidation state of Cu in the Cu2O–Au–TiO2 composite gradually changed from Cu(I) to Cu(II) during the photocatalytic Cr(VI) reduction. However the composite maintained its high photocatalytic performance even after oxidation. The role of Au in the Cu2O–Au–TiO2 composite was examined by comparing the properties of the Cu2O–Au–TiO2 composite with those of the Cu2O–TiO2 composite prepared via direct Cu2O deposition on TiO2.  相似文献   

8.
Heavy metals and ammonia are difficult to remove from wastewater, as they easily combine into refractory complexes. The struvite formation method (SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia. The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper–ammonia complex ion. Ammonia was separated from solution as crystalline struvite, and the copper mainly co-precipitated as copper hydroxide together with struvite. Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide. Hydrogen bonding was concluded to be the key factor leading to the co-precipitation. In addition, incorporation of copper ions into the struvite crystal also occurred during the treatment process.  相似文献   

9.
The discharge of heavy metal ions such as Cu~2+and Pb~2+poses a severe threat to public health and the environment owing to their extreme toxicity and bioaccumulation through food chains Herein, we report a novel organic–inorganic hybrid adsorbent, Al(OH)_3-poly(acrylamide dimethyldiallylammonium chloride)-graft-dithiocarbamate(APD), for rapid and effectiv removal of Cu~2+and Pb~2+. In this adsorbent, the "star-like" structure of Al(OH)3 poly(acrylamide-dimethyldiallylammonium chloride) served as the support of dithiocarbamat(DTC) functional groups for easy access of heavy metal ions and assisted development of larg and compact floccules. The synthesized adsorbent was characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), and thermogravimetric analysis(TGA). APD was demonstrated to hav rapid adsorption kinetics with an initial rate of 267.379 and 2569.373 mg/(g·min) as well a superior adsorption capacities of 317.777 and 586.699 mg/g for Cu~2+and Pb~2+respectively. Th adsorption process was spontaneous and endothermic, involving intraparticle diffusion and chemical interaction between heavy metal ions and the functional groups of APD. To assess it versatility and wide applicability, APD was also used in turbid heavy metal wastewater, and performed well in removing suspended particles and heavy metal ions simultaneously through flocculation and chelation. The rapid, convenient and effective adsorption of Cu~2+and Pb~2+give APD great potential for heavy metal decontamination in industrial applications.  相似文献   

10.
The oxidation of antimony(III) in soils was studied using X-ray absorption fine structure(XAFS)spectra.An andosol soil sample and artificial soil samples(SiO_2 blended with iron(III) hydroxide and manganese(IV) oxide) were used herein.After adding antimony(III) oxide to all soil samples,the oxidation process was observed by recording the XAFS spectra of Sb K-edge,Fe Kedge,and Mn K-edge.The results indicated that manganese(IV) oxide played an important role in the oxidation of Sb(III);however iron(III) hydroxide was not directly related to the reaction.During a 2-hr continuous Sb K-edge X-ray absorption near edge structure(XANES) measurement with an interval of 1 min of one of the artificial soil samples(SiO_2+ MnO_2+ Sb_2O_3),a pseudo-first-order reaction was determined with an average estimated rate of 0.52 ± 0.04 hr-1.Compared to the lower oxidation rate of andosol,it is suggested that because of the low concentration of Mn(IV) in natural soils,the oxidation process of Sb(III) might be relatively slow and require more time to convert Sb(III) to Sb(V).  相似文献   

11.
Graphene oxide is a very high capacity adsorbent due to its functional groups and π?π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide (SGO) was used as a high-efficiency adsorbent to remove Congo red (CR) and Cadmium (II) from aqueous solutions. The effects of solution initial concentration (20 to 120 mg/l), solution pH (pH 2 to 7), adsorption duration (0 to 140 min) and temperature (298 to 323 K) were measured in order to optimize the adsorption conditions using the SGO adsorbent. Morphological analysis indicated that the silica nanoparticles could be dispersed uniformly on the graphene oxide surfaces. The maximum capacities of adsorbent for effective removal of Cd (II) and CR were 43.45 and 333.33 mg/g based on Freundlich and Langmuir isotherms, respectively. Langmuir and Freundlich isotherms displayed the highest values of Qmax for CR and Cd (II) adsorption in this study, which indicated monolayer adsorption of CR and multilayer adsorption of Cd (II) onto the SGO, respectively. Thermodynamic study showed that the enthalpy (ΔH) and Gibbs free energy(ΔG) values of the adsorption process for both pollutants were negative, suggesting that the process was spontaneous and exothermic in nature. This study showed active sites of SGO (π-π, hydroxyl, carboxyl, ketone, silane-based functional groups) contributed to an enormous enhancement in simultaneous removal of CR and Cd (II) from an aqueous solution, Therefore, SGO can be considered as a promising adsorbent for future water pollution control and removal of hazardous materials from aqueous solutions.  相似文献   

12.
Biosorption can be an effective process for the removal of heavy metals from aqueous solutions.The adsorption of Cu(Ⅱ) from aqueous solution on the extracellular polymers (EPS) from Bacillus sp.(named MBFF19) with respect to pH,incubation time,concentration of initial Cu(Ⅱ),and biosorbent dose was studied.Biosorption of Cu(Ⅱ) is highly pH dependent.The maximum uptake of Cu(Ⅱ) (89.62 mg/g) was obtained at pH 4.8.Biosorption equilibrium was established in approximately 10 min.The correlation coeffcient of mor...  相似文献   

13.
In order to enhance the removal efficiency of As(III), a pre-oxidation process is generally applied first to convert As(III) to As(V), which may cause unwanted new contaminants. To overcome this problem, efforts were made to develop an effective way to remove As(III)directly without an oxidation step. The effect of polyacrylamide polymers(PAMs) such as anionic PAM, cationic PAM and nonionic PAM, on As(III) ion adsorption by spent grain(SG)was investigated. The physico-chemical properties of the three PAM-polymerized SGs(APSG(anionic PAM-polymerized modified spent grain), CPSG(cationic PAM-polymerized spent grain) and NPSG(nonionic PAM-polymerized spent grain)) were analyzed using Fourier transform infrared(FT-IR), scanning electron microscope(SEM) and zeta potential.Batch experimental data showed that the sequence of preferential adsorption for As(III) was APSG CPSG NPSG. Active functional groups such as amino group(NH2), carbonyl group(C_O), C–N bond of the amide group(CONH2), and hydroxyl group(O–H) were responsible for As(III) adsorption. Many tubular structures occurring on the surface of APSG possibly increase the specific surface areas and favor the adsorption of As(III) ions. A fixed-bed study was carried out by using APSG as an adsorbent for As(III) from water. Three factors such as bed height, initial concentration and flow rate were studied, and breakthrough curves of As(III) were obtained. The Adams–Bohart model was used to analyze the experimental data and the model parameters were evaluated.  相似文献   

14.
The effects of interaction between Bacillus subtilis DBM and soil minerals on Cu(Ⅱ)and Pb(Ⅱ)adsorption were investigated.After combination with DBM,the Cu(Ⅱ)and Pb(Ⅱ)adsorption capacities of kaolinite and goethite improved compared with the application of the minerals independently.The modeling results of potentiometric titration data proved that the site concentrations of kaolinite and goethite increased by 80%and 30%,respectively after combination with DBM.However,the involvement of functional groups in the DBM/mineral combinations resulted in lower concentrations of observed sites than the theoretical values and led to the enhancement of desorption rates by NH_4NO_3 and EDTA-Na_2.The DBM-mineral complexes might also help to prevent heavy metals from entering DBM cells to improve the survivability of DBM in heavy metal-contaminated environments.During the combination process,the extracellular proteins of DBM provided more binding sites for the minerals to absorb Cu(Ⅱ)and Pb(Ⅱ).In particular,an especially stable complexation site was formed between goethite and phosphodiester bonds from EPS to enhance the Pb(Ⅱ)adsorption capacity.So,we can conclude that the DBM–mineral complexes could improve the Cu(Ⅱ)and Pb(Ⅱ)adsorption capacities of minerals and protect DBM in heavy metal-contaminated environments.  相似文献   

15.
Efficient removal of non-biodegradable and hazardous dyes from wastewater remains a hot research topic. Herein, a rationally designed a Cu(Ⅱ)-based metal–organic gel(Cu-MOG) with a nanoporous 3 D network structure prepared via a simple one-step mixing method was successfully employed for the removal of cationic dyes. The Cu-MOG exhibited high efficiency, with an adsorption capacity of up to 650.32 mg/g, and rapid adsorption efficiency, with the ability to adsorb 80% of Neutral Red within 1 min. The high adsorption efficiency was attributed to its large specific surface area, which enabled it to massively bind cationic dyes through electrostatic interaction, and a nanoporous structure that promoted intra-pore diffusion. Remarkably, the Cu-MOG displayed size-selective adsorption, based on adsorption studies concerning dyes of different sizes as calculated by density functional theory. Additionally, the adsorption performance of the Cu-MOG still maintained removal efficiency of 100% after three regeneration cycles. These results suggested that the Cu-MOG could be expected to be a promising and competitive candidate to conveniently process wastewater.  相似文献   

16.
The feasibility of copper recovery by induced crystallization in a long period(174 days) was investigated in a seeded fluidized bed reactor(FBR). The process was divided into 3 periods according to different influent conditions, and the period III was separated into III-a and IIIb due to the adjustment of the molar ratio of CO_3~(2-)concentration to copper concentration([CT]/[Cu~(2+)]). The removal efficiency could exceed 95% and the average effluent copper concentration decreased to 3.0 mg/L. The mean particle size of seed grains with copper crystals coating on, raised to 0.36 mm from initial 0.18 mm. During period III-a, the supersaturation exceeded 2.88 × 104, the removal efficiency decreased to 60%–80% and the particle size dropped to 0.30 mm, due to the generation of fines by homogeneous crystallization and seeds breaking. And the morphology of the crystals on the seed grains changed from rod-like to spherical which lead to the particle size decreasing. In period III-b,the supersaturation was modified by adjusting the molar ratio of [CT]/[Cu2+] to 1.2 from 2.The efficiency was back to 95% and the mean particle size grew to 0.36 mm at the end of IIIb, the crystals coating on the seeds turned back to rod-like products of good stability. This study illustrated that the copper salt crystal could keep on growing on the seed grains for over 150 days, the feasibility and controllability of copper recovery by induced crystallization process in FBR were satisfactory, even under the dramatic changes in influent conditions.  相似文献   

17.
Transition metal iron and persistent free radicals(PFRs) both affect the redox properties of biochar, but the electron transfer relationship between them and the coupling reduction mechanism of Cr(Ⅵ) requires further investigation. To untangle the interplay between iron and PFRs in biochar and the infuences on redox properties, FeCl3-modified rice husk biochar(FBCs) was prepared and its reduction mechanism for Cr(Ⅵ) without light was evaluated. The FBCs had higher surface positive cha...  相似文献   

18.
IntroductionRecognitionofmercuryasatrans nationalboundarypollutantandthediscoveryofthenegativecorrelationbetweenfishmercurylevelsandwaterpHanditsimplicationwithregardtoacidrainhavegeneratedalotofinterestinscientificresearchonenvironmentalmercuryconta…  相似文献   

19.
20.
Waste textiles(WTs) are the inevitable outcome of human activity and should be separated and recycled in view of sustainable development. In this work, WT was modified through grafting with acrylic acid(AA) via radical polymerization process using ceric ammonium nitrate(CAN) as an initiator and microwave and/or UV irradiation as energy supply. The acrylic acid-grafted waste textiles(WT-g-AA) thus obtained was then used as an adsorbent to remove Pb(Ⅱ) from Pb(Ⅱ)-containing wastewater. The effects of p H, initial concentrations of Pb(Ⅱ) and adsorbent dose were investigated, and around 95% Pb(Ⅱ) can be removed from the aqueous solution containing 10 mg/L at p H 6.0–8.0. The experimental adsorption isotherm data was fitted to the Langmuir model with maximum adsorption capacity of35.7 mg Pb/g WT-g-AA. The Pb-absorbed WT-g-AA was stripped using dilute nitric acid solution and the adsorption capacity of Pb-free material decreased from 95.4%(cycle 1) to91.1%(cycle 3). It was considered that the WT-g-AA adsorption for Pb(Ⅱ) may be realized through the ion-exchange mechanism between \COOH and Pb(Ⅱ). The promising results manifested that WT-g-AA powder was an efficient, eco-friendly and reusable adsorbent for the removal of Pb(Ⅱ) from wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号