首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel polymer blends based on completely renewable polymers were reported. Polymer blends based on polylactic acid (PLA) and oxidized and hydroxylated soya bean oil polymers were prepared. Plasticization and mechanical strength effect of the soya bean oil polymers on the PLA were observed. Fracture surface analysis of the polymer blends was carried out by using scanning electron microscopy. The PLA blends showed more amorphous morphologies compared to pure PLA. The blends had better elongation at break in view of the stress–strain measurement. Blend of PLA with the hydroxylated polymeric soya bean oil indicated the slightly antibacterial properties.  相似文献   

2.
Plasticized starch (PLS) is a renewable, degradable, and inexpensive polymer, but it suffers from poor mechanical properties. The mechanical properties can be improved by blending PLS with polyolefins, nonetheless, at high PLS content, the mechanical properties remain poor. Here we show that addition of clay can greatly improve the mechanical properties of PLS/polypropylene blends at high starch content. Unmodified and organically modified montmorillonite clays, MMT and Cloisite 30B respectively, were added to blends of glycerol-plasticized starch and polypropylene, compatibilized using maleated polypropylene. TEM indicates that MMT is well dispersed in the PLS phase of the blends, while Cloisite 30B is located both within the PLS phase as well as at the interface between PLS and PP. At high PLS content, the addition of clay increased the tensile strength and tensile modulus by an order of magnitude, while reducing the ultimate elongation only slightly. Such improvements are attributable to both the addition of clay as a reinforcing component, as well as to the change in the two phase morphology due to addition of clay.  相似文献   

3.
Journal of Polymers and the Environment - Nowadays, researchers continue studies for alternative materials to replace the redundant petroleum-based products. The combination of various polymer...  相似文献   

4.
Development of biodegradable polymers from absolute environmental friendly materials has attracted increasing research interest due to public awareness of waste disposal problems caused by low degradable conventional plastics. In this study, the potential of incorporating natural rubber latex (NRL) into chemically modified sago starch for the making biodegradable polymer blends was assessed. Native sago starch was acetylated and hydroxypropylated before gelatinization in preparing starch thermoplastic using glycerol. They were than casted with NRL into biopolymer films according to the ratios of 100.00/0.00, 99.75/1.25, 98.50/2.50, 95.00/5.00, 90.00/10.00 and 80.00/20.00 wt/wt, via solution spreading technique. Water absorption, thermal, mechanical, morphological and biodegradable properties of the product films were evaluated by differential scanning calorimetry (DSC), universal testing machine (UTM), scanning electron microscopy (SEM) and fourier transform infrared spectroscopy. Results showed that acetylation promoted the incorporating behavior of NRL in sago starch by demonstrating a good adhesion characteristic and giving a uniform, homogenous micro-structured surface under SEM observation. However, the thin biopolymer films did not exhibit any remarkable trend in their DSC thermal profile and UTM mechanical properties. The occurrence of NRL suppressed water adsorption capacity and delayed the biodegradability of the biopolymer films in the natural environment. Despite the depletion in water adsorption capacity, all of the product films degraded 50 % within 12 weeks. This study concluded that biopolymers with desirable properties could be formulated by choosing an appropriate casting ratio of the sago starch to NRL with suitable chemical substitution modes.  相似文献   

5.
Journal of Polymers and the Environment - This work prepared oral strip-film for nicotine delivery using polyvinyl alcohol and polyvinylpyrrolidone as polymeric film and glycerin as a plasticizer....  相似文献   

6.
Many natural polymers with various chemical structures are used to prepare transdermal patches. Pectin is a one interesting type of polymer because it can control drug release when used in transdermal patches. In Thailand, the waste from durian fruit-hulls is a major problem for the environment. However, the pectin from it can be isolated under acid conditions and used to prepare transdermal patches for nicotine delivery which has not yet been reported. As the isolated pectin is a natural polymer, the film made from isolated pectin is a brittle; therefore, adding a low protein natural rubber latex (LPNRL) polymer was needed to increase its flexibility. The transdermal patches were amorphous and had Tg values ranging from 81.0 to 93.3 °C. Moisture uptake, swelling ratio, and erosion values of the patches were significantly decreased after addition of LPNRL, which resulted in low hydrophilicity. The in vitro release and permeation of nicotine depends on the hydrophilicity of the patches. The kinetic models for in vitro release and permeation of nicotine were Higuchi model and zero order, respectively. In conclusion, pectin isolated from fruit-hulls of Mon Thong durians is an effective polymer to control the release of nicotine. It also is an option that could solve the environmental problems caused by durian fruit-hulls waste.  相似文献   

7.
Synthetic polymers are important to the packaging industry but their use raises aesthetic and environmental concerns, particularly with regard to solid waste accumulation problems and the threat to wildlife. Some concerns are addressed by attention to problems associated with source reduction, incineration, recycling and landfill. Others are addressed by the development of new biodegradable polymers either alone or in blends. Materials used for biodegradable polymers include various forms of starch and products derived from it, biopolyesters and some synthetic polymers. Starch is rapidly metabolised and is an excellent base material for polymer blends or for infill of more environmentally inert polymers where it is metabolised to leave less residual polymer on biodegradation. This should help to improve the environmental impact of waste disposal. A number of standard methods have been developed to estimate the extent of biodegradability of polymers under various conditions and with a variety of organisms. They tend to be used mainly in the countries where they were developed but there is much overlap between the standards of different countries and wide scope for development of consistent and international standards.  相似文献   

8.
The present investigation dealt with the flow behavior and processability of polylactic acid/polystyrene (PLA/PS) polymer blends using a capillary rheometer. For this purpose, PLA/PS blends with different ratios of the concentrations were prepared using a single screw extruder. The shear viscosity, shear stress, shear rate, power-law index, viscous activation energy at a constant shear stress, and elongational stress were determined. PLA/PS blends exhibited a typical shear-thinning behavior over the entire range of shear rates tested, and the viscosity values of the blends would tend to decrease with increasing amount of PLA. In addition, the polymer blend of 70 % PLA and 30 % PS was found to be relatively less sensitive to the processing temperature, implying that the extrusion process was more desirable for fabrication of PLA/PS polymer blend than the injection process.  相似文献   

9.
Blends of zein and nylon-6 (55?k) in formic acid were used to produce solution cast films and electrospun fibers. When the amount of nylon-6 was 8?% or less blends were formed that had improved tensile strength and reduced solubility. The blends were analyzed using physical property measurements, DSC and IR spectra. Using between 2 and 8?% nylon-6 provided a 33?% increase in tensile strength. Young??s modulus increased by over 50?% in this range. In general elongation was lower for all formulations. Surprisingly the cast films having 0.5?C8?% nylon-6 had improved solvent resistance to 90?% ethanol/water. Electrospun fibers were produced from formic acid solutions of zein and nylon-6 where the amount of nylon was 0, 2 and 6. Fibers produced from 27?% spinning solids had average diameters on the order of 0.5???m. Reducing the spinning solids to 21?% provide slightly smaller fibers however, the fibers had more defects.  相似文献   

10.
Blends of poly(3-hydroxybutyrate) (PHB) and poly(ethylene terephthalate-co-1,4-cyclohexenedimethanol terephthalate) (PETG) were prepared in a batch mixer and in a twin screw extruder and characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), field emission scanning electron microscopy (FE SEM), flexural tests, biodegradation tests in soil compost and in an enzymatic medium. The torque data showed that the addition of PETG to PHB improved its processability. DSC, DMA and FE SEM showed that the polymers are immiscible with morphology dependent on the processing conditions. A fine dispersion of PETG in the PHB matrix was observed for extruded and injection molded blends. Flexural modulus for blends was higher for blends in comparison with PHB, while the impact resistance of blends containing 20 wt% and 30 wt% of PETG is comparable to the value for PHB. PHB is biodegradable, while PETG did not degrade either in simulated soil or in the α-amylase medium. On the other hand, the PHB phase of the blends degrades under these aging conditions. Thus, the addition of PETG to PHB results in advantage such as improving of processability and Young′s modulus without significant changes in the impact resistance while keeping the biodegradability of PHB.  相似文献   

11.
Blends of zein and polyvinylpyrrolidone (PVP) were compared based on their tensile properties, thermal properties and morphology. Zein was blended with polyvinylpyrrolidone of varying molecular weights (10, 55, and 1,300 kDa) and films were cast from ethanol solutions. Films cast using the higher molecular weight polymers showed an improvement in tensile strength, up to a 24% increase, compared to control. Differential scanning calorimetry data for the blends showed single Tm and Tg values of an intermediate value between those of zein and PVP control samples. Field emission scanning electron microscopy images show no obvious inhomogeneities, and confocal fluorescence microscopy showed no decreased uniformity in the PVP/zein films compared to control. Electrospun fibers of the zein/PVP blends were also obtained. These findings suggest that zein and polyvinylpyrrolidone combine to form a compatible blend, the first such blend of zein with a synthetic polymer.  相似文献   

12.
再生资源经营与政府管理   总被引:2,自引:2,他引:0  
再生资源是21世纪唯一增长的资源,已成为全世界发展最快的朝阳产业。在发达国家,再生资源产业已经发展成为一个集“回收”与“再制造”为一体的独立产业,被称为第四产业。首先分析了再生资源经营的特征,并在此基础上研究出了再生资源经营管理具有“两不”发展规律,阐述了我国加强再生资源经营管理的意义,最后从政府的角度提出了加强再生资源经营管理的措施。  相似文献   

13.
14.
Functional Properties of Extruded Starch Acetate Blends   总被引:1,自引:0,他引:1  
Starch acetate, with degree of substitution of 2, was blended with 0, 7.5 and 15% polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) or Mater-Bi ZF03U (MBI) and 10%, 13%, or 16% (d.b.) ethanol and twin-screw extruded at 160°C barrel temperature. Physical characteristics of the extrudates, such as radial expansion ratio, unit and bulk densities, and of the mechanical properties, including unit spring index and bulk spring index, were measured. Type of polymer, polymer content, and ethanol content significantly affected the physical characteristics and mechanical properties. The sample extruded with 7.5% PLA and 13% ethanol had the highest expansion ratio and bulk spring index. The sample with 15% MBI and 16% ethanol had the lowest unit density, while the sample with 7.5% PLA and 16% ethanol had lowest bulk denisty. The highest unit spring index was expressed in the sample containing 7.5% PLA and 10% ethanol.  相似文献   

15.
Food preservatives or drug compounds can be eluted from polymer substrates to prevent the occurrence of hospital-acquired infections and food spoilage. We investigated the antimicrobial and drug-elution properties of the albumin and zein thermoplastic blends plasticized with glycerol and mixed with varying amounts of low-density polyethylene (LDPE), food preservatives (sodium benzoate or sodium nitrite), and drugs (ampicillin or ciprofloxacin). Bacillus subtilis and Escherichia coli were utilized as Gram (+) and Gram (?) species, respectively, for antimicrobial and drug-elution analyses, since these species are common in the human body and in food environments. The amount of contamination occurring in food and medical applications could be limited with usage of plastic blends made from thermomechanical molding of proteins (albumin from hen egg white and zein from corn), drug eluting compounds, and low-density polyethylene.  相似文献   

16.
The presented work deals with blends composed of polyvinyl alcohol (PVA) and biopolymers (protein hydrolysate, starch, lignin). PVA does not belong to biologically inert plastics but its degradation rate (particularly under anaerobic conditions) is low. A potential solution to the issue problem lies in preparation of blends with readily degradable substrates. We studied degradation of blow-molded films made of commercial PVA and mentioned biopolymers in an aqueous anaerobic environment employing inoculation with digested activated sludge from the municipal wastewater treatment plant. Films prepared in the first experimental series were to be used for comparing biodegradation of blends modified with native or plasticized starch; in this case effect of plasticization was not proved. The degree of PVA degradation after modification with native or plasticized starch increases in a striking and practically same manner already at a starch level as low as approximately 5 wt.%. Films of the second experimental series were prepared as additionally modified with protein hydrolysate and lignin. Only lignin-modified samples exhibited a somewhat lower degree of biodegradation but regarding the measure of lignin present in blend this circumstance is not essential. Level of biodegradation with all discussed films differed only slightly—within range of experimental error.  相似文献   

17.
In this paper, the processability and the performance of a biodegradable polymer, Mater-Bi, and of its blends with either a sample of poly (hydroxy alkanoates) (PHA) or with bacterial biomass containing PHAs were compared. Adding PHA or directly the biomass containing it allows improving the processability of the matrix. Moreover, the mechanical behaviour of the systems was compared considering two different preparation methods, namely compression and injection moulding. The injection moulded samples show poorer mechanical performances than those of the compression moulded systems. The impact strength significantly improves when PHA is added while it reduces when bacterial biomass is used instead. In this latter case this was likely due to the easier propagation of micro-cracks during the impact tests.  相似文献   

18.
High polymer blends of Polymethyl methacrylate (PMMA) with cellulose acetate (CA) and Cellulose acetate phthalate (CAP) of varying blend compositions have been prepared to study their biodegradation behavior and blend miscibility. Films of PMMA–CA, and PMMA–CAP blends have been prepared by solution casting using Acetone and Dimethyl formamide(DMF) as solvents respectively. Biodegradability of these blends has been studied by four different methods namely, soil burial test, enzymatic degradation, and degradation in phosphate buffer and activated sludge degradation followed by water absorption tests to support the degradation studies. Degradation analysis was done by weight loss method. The results of all the tests showed sufficient biodegradability of these blends. Degradability increased with the increase in CA and CAP content in the blend compositions. The miscibility of PMMA–CA and PMMA–CAP blends have been studied by solution viscometric and ultrasonic methods. The results obtained reveal that PMMA forms miscible blends with either CA or CAP in the entire composition range. Miscibility of the blends may be due to the formation of hydrogen bond between the carbonyl group of PMMA and the free hydroxyl group of CA and CAP.  相似文献   

19.
Blends of HDPE wastes: study of the properties   总被引:1,自引:0,他引:1  
In this work we have analysed the properties of blends of recycled high-density polyethylene (HDPE) filled with talc. We have used two kinds of polymer matrices. The first one came entirely from ground injection moulded parts whereas the second was bimodal, incorporating 80% of the previous HDPE and 20% of recycled HDPE coming from bottles. We have also used two kinds of commercial talc characterized by a medium particle size of 2 microm and 10 microm, respectively. The amount of talc added to both matrices weighed of 10% and 20%. With regards to the mechanical properties of the analysed composites, greater values of Young's modulus and break stresses were found using a smaller particle size and higher talc content. On the other hand, the combination of the two HDPEs with very different viscosities produced a notable increase in the strain at break and in the absorbed energy; both measured at high and low strain rates. Despite the differences in viscosities between the two HDPEs, we did not observe separation of phases during either the processing or testing. Under impact loading, the higher energy absorption in the composites was observed when the finest talc grade with a 10% content weight was added to the bimodal matrix.  相似文献   

20.
Although hemicellulose is found widely in nature, it is currently under-utilized as a raw material for commercial applications. It would be desirable to find new uses for hemicellulose in order to add value to this agro-based material. A common type of hemicellulose is xylan, which is found in a number of wood species and in cotton. In this work we prepared cationic and anionic xylan derivatives and characterized them by 13C NMR, FT-IR, size exclusion chromatography (SEC), thermal analysis, and rheology. In particular, the 13C NMR spectra of carboxymethyl xylan (CMX) and quaternary ammonium-adducted xylan (QAX) were fully assigned with the help of samples with different degrees of substitution. SEC indicated that the beechwood xylan showed a bimodal molecular weight distribution, but with derivatization the distribution tended to become unimodal. Thermal analysis and rheology studies did not uncover any surprises; the solution of xylan and its derivatives exhibited mostly Newtonian behavior. The blends of CMX and QAX produced a precipitate at almost all ratios, indicating the formation of a polyelectrolyte complex. When cationic and anionic xylan samples were added together to paper, the paper dry strength increased. Thus, the combination of cationic/anionic xylan may be of interest in selected applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号