首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Crop soils, ditch sediments and water flowing from several Lower Fraser River (LFR) farm areas of British Columbia, Canada, to salmon tributary streams of that river were sampled in 2004–2005 to quantify for residues of triazine [atrazine, desethylatrazine (a transformation product of atrazine), propazine, and simazine] and metolachlor (a chloroacetamide) herbicides. Average concentrations [μg kg?1 dry weight (d.w.)] of triazine (10,110) and metolachlor (8,910) herbicides detected in crop soils at the start (May 2004, 2005) of the growing season were about 17 and 6 times, respectively, higher than those found for both herbicide groups during (June–Sept, 2004, 2005) the growing season. In contrast, mean concentrations (μg L?1) of triazines (0.092) and metolachlor (0.014) in permanent ditches adjacent to farms were about 7 and 28 times, respectively, lower at the start than during the growing season. Both herbicide groups in ditch sediments were detected only during the growing season at concentrations averaging about 315 μg kg?1 d.w. The risk potential of these herbicides for non-target aquatic organisms inhabiting permanent farm ditches contiguous to tributary streams of the LFR during the growing season is evaluated and discussed.  相似文献   

2.
Transient and permanent farm ditches flowing to the Lower Fraser River tributary fish streams of British Columbia, Canada, were sampled at several locations in 2003-2004 to determine the occurrence and concentration of residues of selected pesticides, their transformation products, and soluble/extractable Cu++ ions. Of the 43 compounds analyzed, 28 and 22 pesticides were detected in transient farm ditch water and sediments, respectively. About 34% fewer pesticides, however, were found in both matrices of permanent farm ditches. Average concentrations (microg L(-1)) of those most frequently detected in permanent farm ditch water were atrazine (0.20), alpha -chlordane (0.06), desethylatrazine (0.13), diazinon (0.55), dieldrin (0.28), endosulfan sulfate (0.16), glyphosate (6), metalaxyl (0.27); and soluble Cu++ ions (25). Those most often found in ditch sediments (microg kg(-1)) were aminomethylphosphonic acid (AMPA) (2,300), 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (DDT) (250), endosulfan sulfate (500), glyphosate (1,225); and extractable Cu++ ions (58,000). The risk potential of these pesticide residues to non-target aquatic organisms inhabiting Fraser River tributary fish streams contiguous to permanent farm ditches is evaluated and discussed.  相似文献   

3.
Atrazine and metolachlor are extensively used in Ontario, Canada for control of broadleaf weeds and annual grasses in corn. Conservation tillage may alter the physical and biological environment of soil affecting herbicide dissipation. The rate of dissipation of these two herbicides in soil from conventional, ridge and no-tillage culture was followed. Herbicide dissipation was best described by first order reaction kinetics. Half life, the time for herbicide residues to dissipate to half their initial concentration, was unaffected by tillage. Half life for atrazine and metolachlor was similar and ranged from 31 to 66 d. The rate of dissipation decreased in dry years when soil moisture content was low. In a dry year, herbicide residues during the growing season were significantly greater on ridge tops than in the other tillage treatments. However, after harvest no differences in herbicide residues were detected among tillage treatments. Residues of atrazine (6 to 9% of applied) and metolachlor (4 to 6%) were detected in soil before planting a year after application. De-ethyl atrazine, the primary degradation product of atrazine, increased in concentration during the growing season with the greatest concentrations measured at harvest and in years when atrazine dissipated fastest. De-ethyl atrazine one year after application accounted for about 12% of the remaining triazine residue. These herbicide residues would not be phytotoxic to subsequent crops but are a potential source for leaching to ground and surface waters.  相似文献   

4.

Transient and permanent farm ditches flowing to the Lower Fraser River tributary fish streams of British Columbia, Canada, were sampled at several locations in 2003–2004 to determine the occurrence and concentration of residues of selected pesticides, their transformation products, and soluble/extractable Cu++ ions. Of the 43 compounds analyzed, 28 and 22 pesticides were detected in transient farm ditch water and sediments, respectively. About 34% fewer pesticides, however, were found in both matrices of permanent farm ditches. Average concentrations (μ g L?1) of those most frequently detected in permanent farm ditch water were atrazine (0.20), α -chlordane (0.06), desethylatrazine (0.13), diazinon (0.55), dieldrin (0.28), endosulfan sulfate (0.16), glyphosate (6), metalaxyl (0.27); and soluble Cu++ ions (25). Those most often found in ditch sediments (μ g kg?1) were aminomethylphosphonic acid (AMPA) (2,300), 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (DDT) (250), endosulfan sulfate (500), glyphosate (1,225); and extractable Cu++ ions (58,000). The risk potential of these pesticide residues to non-target aquatic organisms inhabiting Fraser River tributary fish streams contiguous to permanent farm ditches is evaluated and discussed.  相似文献   

5.
Solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS) was used to analyze two triazine (atrazine and simazine) and three chloroacetamide herbicides (acetochlor, alachlor, and metolachlor) in water samples from a midwest US agricultural drainage ditch for two growing seasons. The effects of salt concentration, sample volume, extraction time, and injection time on extraction efficiency using a 100-mum polydimethylsiloxane-coated fiber were investigated. By optimizing these parameters, ditch water detection limits of 0.5 microgL(-1) simazine and 0.25 microgL(-1) atrazine, acetochlor, alachlor, and metolachlor were achieved. The optimum salt concentration was found to be 83% NaCl, while sample volume (10 or 20 mL) negligibly affected analyte peak areas. The optimum extraction time was 40 min, and the optimum injection time was 15 min. Results indicated that atrazine levels in the ditch water exceeded the US maximum contaminant level for drinking water 12% of the time, and atrazine was the most frequently detected among studied analytes.  相似文献   

6.
Tran AT  Hyne RV  Doble P 《Chemosphere》2007,67(5):944-953
The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), < 0.1-0.9 microg l(-1) and 0.2-17.8 microg l(-1) at site 1; < 0.1-3.5 microg l(-1), < 0.1-0.2 microg l(-1) and < 0.2-3.2 microg l(-1) at site 2 for simazine, atrazine and diuron, respectively.  相似文献   

7.
Hyne RV  Aistrope M 《Chemosphere》2008,71(4):611-620
A passive sampler device selective for hydrophilic analytes was constructed from cellulose membrane (40microm thickness) pre-stained with ruthenium red for 96-168h to impede degradation of the cellulose. The sampling device consisted of pre-stained cellulose membrane tubing containing a binary mixture of the solvents 1-dodecanol and 2,2,4-trimethylpentane as the sequestering medium. A laboratory flow-through system was used to investigate the rates of uptake of herbicides into the solvent mixture of the device and their release. The target herbicides were diuron, atrazine, metolachlor and molinate. Uptake of the herbicides into the solvent mixture of the cellulose membrane device was linear for up to 22 days, and daily sampling rates were determined. Release half-lives from the solvent mixture of the sampling device varied from 14 days for diuron, 15 days for atrazine, 84 days for metolachlor and 28 days for molinate. A field study was undertaken to determine if herbicide concentrations in agricultural drainage water derived from the passive sampler devices deployed for periods from 7 to 22 days, using the laboratory-derived sampling rates, would compare closely with time-weighted average herbicide concentrations determined from extractions of daily composite water samples. The concentrations of diuron, atrazine, metolachlor and molinate determined using the cellulose membrane devices were within twofold of the cumulated mean of the daily drainage water extractions.  相似文献   

8.
Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean-fed > corn-fed > not-fed-earthworm-castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn-castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean- and corn-castings treatments was always less than desorption from soil and not-fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

9.
During 1993, estuarine surface water samples were collected from the mid-Texas coast (Corpus Christi to Port Lavaca, TX). Agricultural watershed areas as well as tidal creeks immediately downstream were chosen as sampling sites along with adjoining bay sampling stations. Collections were made throughout the growing season (February to October 1993) before and after periods of significant (> 1.25 cm) rainfall. All samples were initially screened for the presence of pesticides using enzyme-linked immunosorbent assay (ELISA) test kits (EnviroGard) for triazine herbicides and carbamate insecticides. All samples were extracted and then analyzed using gas chromatography (GC) for quantification of atrazine. Only samples testing positive for carbamate insecticides via ELISA were further extracted for GC analysis to quantify aldicarb and carbofuran. Additionally, laboratory toxicity tests using phytoplankton were examined from published, peer-reviewed literature and compared with the atrazine field levels found in Texas. Results of ELISA screening indicated the presence of triazine herbicides in nearly all samples (>93%). GC analysis further confirmed the presence of atrazine concentrations ranging from <0.01-62.5 microg/L. Screening tests also found detectable levels of carbamate insecticides (aldicarb and carbofuran) that were also confirmed and quantified by GC. Comparison of measured concentrations of atrazine compared with published toxicity tests results indicated that there was a potential environmental risk for marine/estuarine phytoplankton in surface waters of Texas estuaries, particularly when the chronic nature of atrazine exposure is considered.  相似文献   

10.
The objective of this study was to characterize concentrations of atrazine, terbuthylazine, and other pesticides in amphibian habitats in surface waters of a corn-production area of the western Highveld region (North-West Province) of South Africa. The study was conducted from November 2001 to June 2002, coinciding with the corn-production season. Pesticide residues were measured at regular intervals in surface water from eight ponds, three in a non-corn-growing area (NCGA) and five within the corn-growing area (CGA). Measured atrazine concentrations differed significantly among sites and between samples. In the five CGA sites, the maximum atrazine concentrations measured during the study ranged from 1.2 to 9.3 microg/L. Although no atrazine was recorded as being applied in the catchment of the three NCGA sites, maximum concentrations from 0.39 to 0.84 microg/L were measured during the study, possibly as a result of atmospheric transport. Maximum measured concentrations of terbuthylazine ranged from 1.22 to 2.1 microg/L in the NCGA sites and from 1.04 to 4.1 microg/L in the CGA sites. The source of terbuthylazine in the NCGA sites may have been in use other than in corn. The triazine degradation products, deisopropylatrazine (DIA) and deethylatrazine (DEA) and diaminochlorotriazine (DACT) were also found in water from both the CGA and NCGA sites. Concentrations of DIA were > or = 1 microg/L throughout the season, while DEA concentrations were mostly <0.5 microg/L before planting but increased after planting and application of herbicides to concentrations >2 microg/L in some locations. Concentrations of DACT were highly variable (LOD to 8 microg/L) both before and after planting and application, suggesting that they resulted from historical use of triazines in the area. Other herbicides such as simazine and acetochlor were only detected infrequently and pesticides such as S-metolachlor, cypermethrin, monocrotophos, and terbuphos, known to be used in the CGA, were not detected in any of the samples. Because of dilution by higher than normal rainfall in the study period, these concentrations may not be predictive of those in years of normal rainfall.  相似文献   

11.
Abstract

Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean‐fed > corn‐fed > not‐fed‐earthworm‐castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn‐castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean‐ and corn‐castings treatments was always less than desorption from soil and not‐fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

12.
The results of a one-year monitoring program on the two Eastern Chinese River systems, i.e. the Liao-He and the Yangtse, with special emphasis on the presence of triazine herbicides are presented. Sediment, suspended solids and water samples from both rivers were analyzed. Additionally, recovery experiments on the SPE-in-field-enrichment procedure and the extraction methods were performed. The samples were measured by gas chromatography coupled with mass spectrometry, electron capture detection and a newly developed mu-plasma atomic emission detector. A typical result of a one-year monitoring was obtained in case of the Liao-He: During winter, at low water period, low triazine values were found. A similar situation was found in early spring. Highest concentrations of atrazine up to 1600 ng/l were found in late spring in the water samples. Maximum concentrations of atrazine, simazine, propazine, simetryn and prometryn were observed in this season as a result of the actual use of triazines. Finally, after the high water period in autumn the triazine concentrations decreased. Additionally, atrazine adsorbed on sediment (up to 2.8 ng/g) and suspended solids was determined (up to 8 ng/l) during late spring sampling. Therefore, the logarithm of the organic carbon based sorption coefficient of atrazine could be calculated. Low levels of atrazine were measured in the water of Yangtse (up to 18.3 ng/l). The concentrations from all sampling points and sampling stations of a particular sampling date were similar, which indicates a homogeneous distribution of this herbicide. Due to the high discharge rate of up to 79,000 m3/s in case of the Yangtse a considerable mass transport of up to 57.5 kg per day atrazine may take place, even at concentrations below the European drinking water limit of 100 ng/l.  相似文献   

13.
Atrazine and metolachlor sorption by earthworm (Lumbricus terrestris L.) burrows was measured by introducing herbicides into the burrows and collecting the effluent between 0 to 3, 3 to 6, and 6 to 9 min of simulated burrow flow. On average, sorption by burrow linings reduced the herbicide concentration to 78% (atrazine) and 74% (metolachlor) of the applied herbicide solution concentration. For both herbicides, the amount sorbed was dependent on the food source available to the earthworm, as well as the duration of burrow flow. On average, soybean-fed- and corn-fed-earthworm-burrows significantly retained more herbicides relative to the Control Treatment (unfed-earthworms). More herbicides were transported through the burrows with time because the lateral flow movement from the burrow wall into the soil matrix decreased. It is also likely that herbicides retained on burrow linings during the first 3 min of flow saturated the adsorption sites on the burrow wall, which decreased the subsequent retention potential of herbicides in flow between 3 to 9 min. Based on these results, we conclude that herbicide transport through earthworm burrows in the field will be related to crop and crop residue management practices.  相似文献   

14.
The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides.  相似文献   

15.
The objective was to investigate the impact of vegetated filter strips on exported atrazine and deethylatrazine concentrations [dissolved and sorbed to eroded sediments (>1.5 μm)], the deethylatrazine to atrazine ratio in water and sediments, the ratio of sorbed to dissolved herbicides in runoff and subsurface infiltration as well as field equilibrium state under natural climate during two seasons. We hypothesize that sorption equilibrium was not achieved in 2004 because of the short delay (<24 h) between herbicide application and the first rain event. In 2005, observations suggest that possible changing sorption equilibrium conditions were reached (20 days after atrazine application), especially for eroded sediments submitted to changing environmental conditions in subsurface. If confirmed by other experiments, this will raise the question of the representativeness of laboratory-determined soil sorption coefficients to predict the fate of pesticides.  相似文献   

16.
The objective was to investigate the impact of vegetated filter strips on exported atrazine and deethylatrazine concentrations [dissolved and sorbed to eroded sediments (>1.5?μm)], the deethylatrazine to atrazine ratio in water and sediments, the ratio of sorbed to dissolved herbicides in runoff and subsurface infiltration as well as field equilibrium state under natural climate during two seasons. We hypothesize that sorption equilibrium was not achieved in 2004 because of the short delay (<24?h) between herbicide application and the first rain event. In 2005, observations suggest that possible changing sorption equilibrium conditions were reached (20?days after atrazine application), especially for eroded sediments submitted to changing environmental conditions in subsurface. If confirmed by other experiments, this will raise the question of the representativeness of laboratory-determined soil sorption coefficients to predict the fate of pesticides.  相似文献   

17.
除草剂阿特拉津(Atrazine)的环境行为综述   总被引:2,自引:0,他引:2  
阿特拉津(2-氯-4-乙胺基-6-异丙氨基-1,3,5,-三氮苯)是目前应用广泛的化学除草剂之一。在世界许多国家和地区的地表水和地下水中已检出了阿特拉津的残留物。阿特拉津对人类的威胁究竟有多大,已成为目前研究的热点。本文从阿特拉津的检测方法、动力学性质、生化性质及风险评估四个方面进行了综述,并提出了自己的观点。  相似文献   

18.
Byer JD  Struger J  Sverko E  Klawunn P  Todd A 《Chemosphere》2011,82(8):1155-1160
Concerns regarding the impacts of pesticides on aquatic species and drinking water sources have increased demands on water quality monitoring programs; however the costs of sample analysis can be prohibitive. In this study we investigated enzyme-linked immunosorbent assay (ELISA) as a cost-effective, high through-put method for measuring pesticide concentrations in surface waters. Seven hundred and thirty-nine samples from 158 locations throughout Ontario were analysed for atrazine and metolachlor from April to October 2007. Concentrations ranged from <0.1 to 3.91 μg L−1 (median = 0.12 μg L−1) for atrazine and from <0.1 to 1.83 μg L−1 (median = 0.09 μg L−1) for metolachlor. Peak concentrations occurred in late spring/early summer, in rural agricultural locations, and decreased over the remainder of the growing season for both herbicides. About 3% of the samples that had ELISA results occurring above the limit of quantification (0.10 μg L−1) were evaluated against gas chromatography-mass spectrometry (GC-MS). Linear regression analysis revealed a R2 value of 0.88 and 0.39, for atrazine and metolachlor, respectively. ELISA tended to overestimate concentrations for atrazine and metolachlor, most likely because the ELISA kits also detect their metabolites. Atrazine data suggest that ELISA may be used complementary with GC-MS analysis to enhance the spatial and temporal resolution of a water quality monitoring study. The commercially available metolachlor ELISA kit requires further investigation. ELISA may be used to detect atrazine and metolachlor in surface water samples, but it is not recommended as a quantitative replacement for traditional analytical methods.  相似文献   

19.
Abstract

The objective of this study was to identify and quantify herbicide residues in water samples of rain, cisterns, streams, ponds, springs, semi-artesian wells, dams and a river in the Rio Samambaia sub-basin in the Federal District and eastern Goiás. A total of 287 samples were collected from 20 farms in the sub-basin in the rainy (February, summer) and dry (August, winter) seasons in 2016. Aminomethylphosphonic acid (AMPA, a glyphosate metabolite), clethodim, chlorimuron-ethyl, diuron, fluazifop acid (a fluazifop-p-butyl metabolite and the active ingredient), haloxyfop acid (a haloxyfop-methyl metabolite and the active ingredient), imazamox, mesotrione, metsulfuron, nicosulfuron and pendimethalin were not identified in any water sample. In the rainy season, approximately 99% of the samples contained residues at least one of the evaluated herbicides; in the dry season (, 100% of the samples contained residues of at least one of the evaluated herbicides. When considering only detection frequency, metribuzin, atrazine, clomazone and haloxyfop-methyl were the main herbicides found in the water of the Samambaia River sub-basin. In turn, based on levels higher than the limit of quantification, the main compounds detected were atrazine, clomazone, haloxyfop-methyl and glyphosate. In both seasons, the highest relative concentrations of herbicides for the rainy and dry seasons were found in spring water, 25% and 56%, respectively, and dam water, 23% and 16%, respectively.  相似文献   

20.
This paper reports the release behavior of two triazines (atrazine and simazine) in stabilised soils from a pesticide-contaminated site in South Australia. The soils were contaminated with a range of pesticides, especially with triazine herbicides. With multiple extractions of each soil sample with deionised water (eight in total), 15% of atrazine and 4% of simazine residues were recovered, resulting in very high concentrations of the two herbicides in leachate. The presence of small fractions of surfactants was found to further enhance the release of the residues. Methanol content up to 10% did not substantially influence the concentration of simazine and atrazine released. The study demonstrated that while the stabilisation of contaminated soil with particulate activated carbon (5%) and cement mix (15%) was effective in locking the residues of some pesticides, it failed to immobilise triazine herbicides residues completely. Given the higher water solubility of these herbicides than other compounds more effective strategies to immobilise their residues is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号