首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to test the ability of phytoplankton to adapt to the high frequency light fluctuations induced by sea surface waves, the green alga Dunaliella tertiolecta was grown under both steady and fluctuating (0.1, 1.0 and 10 Hz) illuminations. The latter conditions reproduced those fluctuations experienced by phytoplankton in the upper photic layer. For each culture, photosynthesis versus irradiance were measured under four incubation frequencies (steady, 0.1, 1.0 and 10 Hz fluctuating illuminations). Results indicated that growth rates were similar for algae grown under steady light and 10 Hz fluctuating light (0.26–0.33 d–1). Cells grown at 0.1 and 1.0 Hz showed lower growth rates (0.17–0.26 d–1). Chlorophyll a and b were significantly higher under 0.1 and 10 Hz frequencies than under steady illumination; at 1.0 Hz, there were no significant differences with steady light. No changes in carotenoids were evidenced at any frequency tested. Photosynthetic measurements showed that algae grown under steady illumination had higher photosynthetic efficiency and capacity when incubated under steady and 0.1 Hz fluctuating light. Photosynthetic characteristics of algae grown under 0.1 Hz illumination did not show any clear responses to fluctuating light. Algae grown under 1.0 or 10 Hz had higher photosynthetic efficiency and capacity than those grown under steady illumination, when incubated under 1.0 and 10 Hz light. This suggests that microalgae grown under high frequency illumination (1.0 and 10 Hz) can adapt their photosynthetic characteristics to the rapidly fluctuating light regime experienced during growth, and that algae grown under steady conditions respond better to steady or slowly fluctuating (0.1 Hz) light. Such an adaptation provides a means of probing the photosynthetic responses of phytoplankton to vertical mixing.Contribution to the program of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec)  相似文献   

2.
Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta Butcher were studied in response to irradiance fluctuations caused by surface-wave focusing. The experimental conditions simulated the prominent features of the light field (high average irradiance, spectral composition and statistical properties) in the uppermost few meters of the water column under sunny surface conditions. The properties of algae grown under high-frequency fluctuations were compared with control cells grown under constant light at the same average irradiance (800 mol quantam-2s-1). No significant differences were found for a number of parameters, including growth rate, cellular chlorophyll a and pigment ratios, photosynthetic unit size and density of Photosystem I reaction centers, the rate of photosynthesis at the growth irradiance, dark respiration, and in vivo fluorescence of chlorophyll a per cell. Photosynthetic parameters were not affected by whether the incident light for oxygen exchange measurements was fluctuating or constant. This was the case whether the cells had been previously acclimated to either fluctuating or constant irradiance. Such a photosynthetic response indicates that cells are accomplishing a time integration of the fluctuating light. In addition, although D. tertiolecta is capable of dramatically changing its optical properties in response to low or high growth irradiance levels, the refractive index of the cells, the efficiency factors for light absorption and scattering by individual cells, and chlorophyll-specific absorption and scattering coefficients of cell suspensions, were all very similar under high irradiance, whether or not wave focusing was present.Contribution to the program of GIROQ (Groupe Interuniversitaire de Recherches Océanographiques du Québec)  相似文献   

3.
The effect of repeated daily freezing on photosynthesis, growth and phenotypic acclimation to freezing was studied in the red algaeChondrus crispus Stackhouse andMastocarpus stellatus (Stackhouse in With.) Guiry. Algae used for experiments were collected from Chamberlain, Maine, between March and August 1987, and field observations and experiments were carried out at Chamberlain and Kresge Point, Maine between March 1987 and March 1989. After ca 30 d of daily freezing for 3 h at –5°C photosynthesis ofC. crispus was reduced to 55% of control values. Growth rates ofC. crispus were also reduced in fronds frozen daily compared to unfrozen controls, and eventually fronds became bleached and fragmented resulting in biomass losses. Fronds ofC. crispus, frozen daily, had higher photosynthetic rates following freezing events than unfrozen controls indicating that this species can acclimate to freezing conditions. Acclimation to freezing involves the light-harvesting reactions of photosynthesis. In contrast, photosynthesis and growth inM. stellatus were unaffected by repeated daily freezing for 3 h at –5°C for 36 d. No differences in photosynthesis following freezing were observed between frozen and control fronds suggesting thatM. stellatus does not phenotypically acclimate to freezing. The greater freezing tolerance ofM. stellatus relative toC. crispus results, in part, from genetic adaptations associated with plasma membranes and the light-harvesting reactions of photosynthesis.  相似文献   

4.
V. A. Gerard 《Marine Biology》1990,107(3):519-528
Comparison of cultured sporophytes and gametophytes in common-garden experiments confirmed the existence of ecotypic differences in light-related traits among populations ofLaminaria saccharina (L.) Lamour. Cultured sporophytes from the turbid habitat in Long Island Sound, New York, USA, grew faster under both limiting and saturating daily irradiances than sporophytes from shallow and deep habitats along the Atlantic coast of Maine. Rapid growth of turbid plants was attributable to several factors, including high photosynthetic capacity and efficiency [due to differences in photosynthetic unit (PSU) number and size], low respiration rates, and high surface area:weight ratios. In contrast to sporophytes, microscopic gametophytes from the three kelp populations grew at similar rates under limiting and saturating daily irradiances. Biomass-specific photosynthesis vs irradiance (PI) parameters were similar for gametophytes from the shallow, deep, and turbid sites, despite population differences in chlorophyll-specific PI parameters and PSU characteristics. However, turbid gametophytes produced microscopic sporophytes more rapidly than gametophytes from the shallow and deep sites, apparently due to a lower blue-light requirement for gametogenesis. Ecotypic differences in sporophytes and gametophytes ofL. saccharina from shallow, deep, and turbid habitats can be understood as phase-specific adaptations.  相似文献   

5.
Chondrus crispus (Stackhouse) is a perennial red seaweed, common in intertidal and shallow sublittoral communities throughout the North Atlantic Ocean. In the intertidal zone, C. crispus may experience rapid temperature changes of 10 to 20C° during a single immerison-emerision cycle, and may be exposed to temperatures that exceed the thermal limits for long-term survival. C. crispus collected year-round at Long Cove Point, Chamberlain, Maine, USA, during 1989 and 1990, underwent phenotypic acclimation to growth temperature in the laboratory. This phenotypic acclimation enhanced its ability to withstand brief exposure to extreme temperature. Plants grown at summer seawater temperature (20°C) were able to maintain constant rates of lightsaturated photosynthesis at 30°C for 9 h. In contrast, light-saturated photosynthetic rates of plants grown at winter seawater temperature (5°C) declined rapidly following exposure to 30°C, reached 20 to 25% of initial values within 10 min, and then remained constant at this level for 9 h. The degree of inhibition of photosynthesis at 30°C was also dependent upon light intensity. Inhibition was greatest in plants exposed to 30°C in darkness or high light (600 mol photons m-2s-1) than in plants maintained under moderate light levels (70 to 100 mol photons m-2s-1). Photosynthesis of 20°C-acclimated plants was inhibited by exposure to 30°C in darkness or high light, but the degree of inhibition was less than that exhibited by 5°C-grown plants. Not only was light-saturated photosynthesis of 20°C plants less severely inhibited by exposure to 30°C than that of 5°C plants, but the former also recovered faster when they were returned to growth conditions. The mechanistic basis of this acclimation to growth temperature is not clear. Our results indicate that there were no differences between 5 and 20°C-grown plants in the thermal stability of respiration, electron transport associated with Photosystems I or II, Rubisco or energy transfer between the phycobilisomes and Photosystem II. Overall, our results suggest that phenotypic acclimation to seawater temperature allows plants to tolerate higher temperatures, and may play an important role in the success of C. crispus in the intertidal environment.  相似文献   

6.
Light-related traits were compared for Laminaria saccharina Lamour. collected from three habitats in Maine and New York, USA, with different ambient light regimes. Light-level, expressed as a proportion of surface irradiance (I0), ranged from 0.04 to 0.32 I0 in the shallow habitat, but rarely exceeded 0.04 I0 in the deep and turbid habitats. Juvenile sporophytes collected from each habitat in April, 1985, were grown at four acclimation light-levels (0.065, 0.12, 0.26, and 0.54 I0) in a common-garden, laboratory experiment. Photosynthesis vs irradiance (PI) parameters, light-harvesting characteristics, and rates of carbon-assimilation and growth were determined for each group of plants. The results indicated that ecotypic differentiation had occurred among the three kelp populations. Photosynthetic capacity (Pmax) and photosynthetic efficiency () were generally highest for plants from the turbid habitat, lowest for deep plants, and intermediate for shallow plants. These differences were largely attributable to variations in light-harvesting characteristics. The nature and magnitude of photoacclimation responses also differed among populations. Population differences in photosynthetic parameters resulted in different rates of C-assimilation and growth by plants from shallow, deep, and turbid habitats. Predictions of in situ growth rates indicated that the severity of light-limitation and, therefore, the adaptive significance of efficient light-utilization vary among the three populations. It is concluded that ecotypic differentiation in light-related traits is important to the broad environmetal range of L. saccharina.  相似文献   

7.
J. Marra 《Marine Biology》1978,46(3):191-202
Parameters of photosynthesis and growth were measured for a marine diatom (Lauderia borealis) grown in axenic continuous culture under three different light regimes: constant, simulated diurnal variation, and fluctuating. The light fluctuations were systematic increases and decreases in light intensity superimposed on the diurnal regime. In the first two regimes, a morning maximum and an afternoon depression in photosynthesis were observed. In the fluctuating light regime, the afternoon depression was less pronounced and the morning maximum was enhanced. The results may be explained by postulating a time-dependent value for the light-saturated rate of photosynthesis. Light utilization [mmol O2 cell-1 (E m-2)-1] was the same for the diurnally varying and fluctuating regimes, despite the fact that the peak light intensity in the fluctuating regime was double that of the diurnally varying regime.  相似文献   

8.
The seasonal photosynthetic responses and daily carbon gain of upper intertidal, low intertidal and subtidal (3 to 4 m depth) populations ofColpomenia peregrina were examined over a 2 yr period (1986–1988) in Santa Catalina Island, California, USA. The populations showed significant differences in their photosynthetic responses, daily carbon balance and carbon-specific growth rates when normalized to tissue area or to chlorophyll content. The substantial plasticity with respect to photosynthetic responses shown byC. peregrina is considered to be an important factor in facilitating the colonization of both intertidal and subtidal habitats. This species appears to have a cellular carbon metabolism influenced by responses to season and tidal elevation. Highest net daily carbon balance, predicted carbonspecific growth rates and net growth efficiency were achieved in upper intertidal habitats during summer. These parameters decreased in winter and progressively declined with increasing depth as plants become increasingly exposed to low-light regimes. The diminishing net daily carbon balance and predicted carbon-specific field growth rates found during winter suggest that standing stock and lower subtidal limits of distribution ofC. peregrina are at least partly controlled by these two factors.  相似文献   

9.
The induction of in vivo chlorophyll a (chl a) fluorescence (change in fluorescence intensity during a time-scale of ms to s) was measured to determine the potential of this technique for assessing the physiological condition of the macroalgae Chondrus crispus and Ulva sp. A gradient in variable fluorescence (P-F 0 =peak minus initial fluorescence, a measure of Photosystem II activity) was found along the frond of C. crispus, the values increasing with distance from the thallus apex. No gradient was observed for Ulva sp. thalli. Nitrogen- or phosphorus-depleted Ulva sp. required a longer dark-conditioning period and had lower values of P-F 0 than did controls. In contrast, no differences were found in P-F 0 of N- or P-depleted C. crispus unless values were normalized to chl a. The irradiance history of C. crispus strongly influenced P-F 0 , even after dark-conditioning: P-F 0 declined by about 70% as the mean daily natural irradiance increased between 2 February and 14 March 1986; a negative correlation was observed between P-F 0 and the photon flux density 1 d prior to the measurement; P-F 0 remained elevated when C. crispus was grown under a low photon flux density; and P-F 0 decreased in thalli within 5 d of transfer from growth under natural irradiance to an incubator with artificial irradiance. Changes in variable fluorescence at different growth irradiances of C. crispus may be due to adaptive changes in the relative absorption cross-section of this alga. The influence of irradiance history on Ulva sp. was minimal in comparison.Issued as NRCC No. 28730Part of this study was carried out while employed by Focal Marine Ltd., Bedford, Nova Scotia, Canada  相似文献   

10.
Photosynthesis versus irradiance relations were determined from field incubations of natural assemblages of phytoplankton that were either cycled at three different rates between the surface and a depth of 5 m or kept at constant depths. Photoinhibition of photosynthesis was not observed in the bottles kept at constant depths during 3.5-h experiments. Photosynthesis versus irradiance (P-I) curves derived from bottles kept at constant depths and the irradiance time course received by each of the cycled bottles were used to predict photosynthesis within each of the cycled bottles. P-I curves derived from measurements under relatively constant irradiance accurately predicted the mean photosynthetic response of phytoplankton that experienced large fluctuations in irradiance.  相似文献   

11.
The net photosynthesis of intertidal, subtidal, carposporic, tetrasporic, and winter versus summer acclimatized plants of Chondrus crispus Stackhouse were evaluated under different temperatures and quantities of light. The optimum temperature and light conditions for net photosynthesis of C. crispus are seasonally and spatially variable, and there is an adaptive shift in the photosynthetic capacity at different seasons and positions on the shore. Plants collected during the fall and winter had lower light optima (465 to 747 ft-c) for net photosynthesis than spring and summer specimens (about 1000 ft-c). Intertidal populations exhibited a higher rate of net photosynthesis between 250 and 2819 ft-c than subtidal plants. Summer materials have a greater tolerance to high temperatures and a higher temperature optimum than winter materials. Shallow subtidal populations (-6m) exhibited a higher temperature optimum than deep subtidal plants (-12m). Tetrasporic plants (diploid) showed a higher rate of net photosynthesis than carposporic plants (haploid). It is suggested that the diploid plants of C. crispus may extend deeper in the subtidal zone, because they have a higher rate of net photosynthesis than carposporic plants. The results of the present studies are compared with previous physiological studies of C. crispus.Published with the approval of the Director of the New Hampshire Agriculture Experiment Station as Scientific Contribution Number 742.  相似文献   

12.
Vertical migration ofGonyaulax catenata andMesodinium rubrum   总被引:1,自引:0,他引:1  
U. Passow 《Marine Biology》1991,110(3):455-463
Diel migration patterns ofGonyaulax catenata andMesodinium rubrum in the central Baltic during spring 1986 are presented. The depth at which maximum cell concentration of these species occurred was dependent during daytime to a great degree on light intensity; it is hypothesized that the organisms migrated upwards toward higher light intensities until a certain threshold irradiance was reached, after which migration was directed downwards to avoid light intensities higher than the threshold. This threshold level probably depended on nutrient conditions and on the daily average of total irradiance of the foregoing days (light history). Furthermore, it is hypothesized that migration is an important mechanism for adapting to daily irradiance fluctuations. The dependence of migration on irradiance was more obvious forG. catenata than forM. rubrum.  相似文献   

13.
In this study, we tested the hypothesis that the importance of water flow for skeletal growth (rate) becomes higher with increasing irradiance levels (i.e. a synergistic effect) and that such effect is mediated by a water flow modulated effect on net photosynthesis. Four series of nine nubbins of G. fascicularis were grown at either high (600 μE m−2 s−1) or intermediate (300 μE m−2 s−1) irradiance in combination with either high (15–25 cm s−1) or low (5–10 cm s−1) flow. Growth was measured as buoyant weight and surface area. Photosynthetic rates were measured at each coral’s specific experimental irradiance and flow speed. Additionally, the instantaneous effect of water flow on net photosynthetic rate was determined in short-term incubations in a respirometric flowcell. A significant interaction was found between irradiance and water flow for the increase in buoyant weight, the increase in surface area, and specific skeletal growth rate, indicating that flow velocity becomes more important for coral growth with increasing irradiance levels. Enhancement of coral growth with increasing water flow can be explained by increased net photosynthetic rates. Additionally, the need for costly photo-protective mechanisms at low flow regimes could explain the differences in growth with flow.  相似文献   

14.
The effects of daily light period on diurnal growth patterns of a green macroalga [Caulerpa cupressoides v.lycopodium f.elegans (J. Agardh) Weber-van Bosse] and a seagrass (Halophila decipiens Ostenfeld) were investigated in Salt River submarine canyon in the US Virgin Islands in summer 1984. The daily light period, in which quantum irradiance exceeded the light saturation point for photosynthesis of the macroalga and seagrass, was manipulated in situ using lamps and shades. Plant growth was measured every 6 h for 7 d under natural and experimental daily light periods.C. cupressoides grew at the same rate day and night.H. decipiens grew more during the day than at night, a pattern that persisted under continuous light and dark treatments, indicating endogenous control of diurnal growth. Growth vs daily light period curves indicate thatC. cupressoides grew faster thanH. decipiens in short daily light periods, consistent with the observation that the macroalga penetrates to deeper water than the seagrass in Salt River canyon. Overall growth (day + night) ofH. decipiens was unaffected in lengthened light periods and reduced in shortened light periods. Chlorophyll content ofC. cupressoides was not correlated with light availability, while that ofH. decipiens was positively correlated. The alga and seagrass had different diurnal growth patterns but similar overall growth responses to daily light periods. This study shows that diurnal growth patterns are probably under endogenous control, while overall growth is a response to in situ light conditions.Contribution#193 from West Indies Laboratory and the National Undersea Research Program  相似文献   

15.
Rates of net photosynthesis and nocturnal respiration by individual blades of the giant kelp Macrocystis pyrifera (L.) C. Agardh in southern California, were determined in situ by measuring oxygen production in polyethylene bags during spring/summer of 1983. Mature blades from different depths in the water column exhibited different photosynthetic characteristics. Blades from the surface canopy (0 to 1 m depth) exhibited higher photosynthetic capacity under saturating irradiance and higher photosynthetic efficiency at low irradiances than blades from 3 to 5 or 7 to 9 m depths. Saturating irradiance was lower for canopy blades than for deeper blades. Canopy blades showed no short-term photoinhibition, but photosynthetic rates of deeper blades were significantly reduced during 1 to 2 h incubations at high irradiances. Results of 1 to 2 wk acclimation experiments indicated that differences between photosynthetic characteristics of blades from different depths were primarily attributable to acclimation light conditions. Vertical displacement of blades within the kelp canopy occurred on a time-scale of 1 min to 1 h. Blades continually moved between the unshaded surface layer and deeper, shaded layers. Vertical movement did not maximize photosynthesis by individual blades; only a small proportion of blades making up a dense surface canopy maintained light-saturated photosynthetic rates during midday incubations. The relatively high photosynthetic rates exhibited by canopy blades over the entire range of light conditions probably resulted from acclimation to intermittent high and low irradiances, a consequence of vertical displacement. Vertical displacement also reduced the afternoon depression in photosynthesis of individual canopy blades. The overall effect of vertical displacement was optimization of total net photosynthesis by the kelp canopy and, therefore, optimization of whole-plant production.  相似文献   

16.
Cultures of the marine dinoflagellate Glenodinium sp. were light-shifted and rates of photoadaptation determined by monitoring changes in cell volume, growth rate, pigmentation, parameters of the photosynthesisirradiance (P-I) curves and respiration. To approximate physiological conditions of field populations, cells were cultured on an alternating light-dark cycle of 12hL:12hD, which introduced a daily periodicity of photosynthesis. One result of the present study was to demonstrate how specific parameters of the P-I relationship influenced by periodicity of the light: dark cycle are distinguished from photosynthetic parameters influenced by changes in light level. Under steady-state conditions, rates of both light-saturated (Pmax) and light-limited photosynthesis changed in unison over the day; these changes were not related to pigmentation, and displayed their maxima midday. This close relationship between Pmax and the slope (a) of the cellular P-I curves in steadystate conditions was quickly adjusted when growth illumination was altered. Rates of light-limited photosynthesis were increased under low light conditions and the periodicity of cellular photosynthesis was maintained. The short-term responses of the P-I relationship to changing light level was different, depending on (1) whether the light shift was from high to low light or vice versa, and (2) whether the high light levels were sufficient to promote maximal photosynthesis rates. Major increases in the photosynthetic carotenoid peridinin, associated with a single type of light-harvesting chromo protein in the chloroplast, was observed immediately upon shifting high light cultures to low light conditions. Following pigment synthesis, significant increases in rates of light-limited photosynthesis were observed in about one-tenth the generation time, while cellular photosynthetic potential was unaffected. it is suggested that general results were consistent with suggested that general results were consistent with earlier reports that the major photoadaptive strategy of Glenodinium sp. is to alter photosynthetic unit (PSU) size. Photoadaptive response times to high light were light-dependent, but appeared to be shower than photoadaptive responses to low light. If light intensities were bright enough to maximize growth rates, photosynthetic response times were on the order of a generation period and pigmentation fell quickly as cells divided at a faster rate. If light-intensities were not sufficient to maximize growth rates, then pigment content did not decline, while rates of light-limited photosynthesis declined quickly. In all cases, photoadaptation was followed best by monitoring fast changes in half saturation constants for photosynthesis, rather than fluctuating changes in pigmentation. Results compared well with time-course phenomena reported for other groups of phytoplankton. Overall, results suggest phytoplankton can bring about photo-induced changes in photosynthesis very quickly and thus accommodate widely fluctuating light regimes over short periods of time.  相似文献   

17.
Four species of estuarine benthic diatoms: Amphiprora c. f. paludosa W. Smith, Nitzschia c. f. dissipata (Kützing) Grunow, Navicula arenaria Donkin, and Nitzschia sigma (Kützing) W. Smith were grown in unialgal cultures. The growth rates of the diatoms were determined as the rate of increase of the chlorophyll a content of the cultures. The diatoms were cultured at different combinations of temperture, daylength, and quantum irradiance. The highest growth rates of Navicula arenaria occurred at 16° to 20°C; the other 3 species had their optimum at 25°C or higher. The small-celled species had higher growth rates at their optimum temperature, but at lower temperatures the growth rates of all 4 species became very similar. The minimum daily quantum irradiance that could effect light-saturated growth at 12° and 20°C ranged from 2.5 to 5.0 E.m-2.day-1. At 12°C, two species had their highest growth rates under an 8 h daily photoperiod. At 20°C, the three species tested all had highest growth rates under 16 h daily photoperiod. The growth response of the benthic diatoms is comparable to that of several cultures of planktonic diatoms, as described in the literature. The influence of temperature and quantum irradiance on the diatoms in the present investigation was comparable to the influence of temperature and light intensity on the 14C-fixation of marine benthic diatoms (Colijn and van Buurt, 1975).  相似文献   

18.
We conducted a study of the relationship between changes in photosynthetic pigment content and water depth in Great Harbor near Woods Hole, Massachusetts, USA, on the green algae Ulva lactuca and Codium fragile and the red algae Porphyra umbilicalis and Chondrus crispus. A calibrated underwater photometer equipped with spectral band filters measured light attenuation by the water column. The depth required for a 10-fold diminution of photon flux was 3.6, 5.3, 6.0 and 6.0 m for red, blue, yellow and green light, respectively. Seaweeds were attached to vertically buoyed lines and left to adapt for 7 days; then, with their positions reversed, they were allowed to readapt for 7 days. All species showed greater photosynthetic pigment content with increased depth. Further, the ratio of phycobiliproteins and chlorophyll b to chlorophyll a increased with depth. Changes in pigment content were reversible and occurred in the absence of cell division. There was a net loss of pigments near the surface (high irradiance), and subsequent synthesis when seaweeds were transferred to a position deep in the water column (low irradiance). In contrast, seaweeds which were found in intertidal habitats changed only their pigment concentration, and not pigment ratio, a phenomena analogous to higher plant sun and shade adaptation. Therefore, seaweeds modify their photon-gathering photosynthetic antennae to ambient light fields in the water column by both intensity adaptation and complementary chromatic adaptation.  相似文献   

19.
D. Rosell  M. J. Uriz 《Marine Biology》1992,114(3):503-507
Massive specimens of Cliona viridis, collected off the coast of Blanes (North-Western Mediterranean Sea) in January 1987, were exposed to different light (natural day-night irradiance/constant darkness) and substrata (calcareous/siliceous) conditions to assess their influence on growth, survival and attachment rates. Sponges cultured under natural irradiance displayed higher growth rates with increasing temperature; those cultured in the dark did not respond to increased temperature, but adapted faster to laboratory conditions. Differences in growth rates between these two culture conditions are ascribed to the presence of a healthy symbiotical zooxanthellae population on individuals cultured under conditions of natural irradiance. Attachment rates of the cut sides of the sponges which were in direct contact with the substratum, also increased with increasing temperature, whilst sponge survival was not significantly dependent on temperature. The chemical nature of the substratum clearly affected survival rates, which were higher on calcified than on siliceous substrata.  相似文献   

20.
Species-specific rates of photosynthetic carbon uptake (P), chlorophyll a content and P versus irradiance (P-I), have been measured for cells of Pyrocystis noctiluca and P. fusiformis isolated from natural populations collected in the euphotic zone within and below the surface mixed layer in the Sargasso Sea. These same measurements and the assay for ribulose bis-phosphate carboxylase (RuBP-Case), have been made for cultures of P. noctiluca in a 12 h L: 12 h D photoperiod at 9 different constant or at changing light intensities. In nature chl a cell-1 was constant throughout the euphotic zone. The photosynthetic capacity (Pmax), of cells captured below the surface mixed layer was lower by a factor of 10 compared with cells collected from the surface mixed layer. The Pmax for P. noctiluca collected and incubated within the surface mixed layer was the same as for cell cultures grown under high light, non nutrient-limiting conditions, suggesting that photosynthesis in the natural system was not nutrient limited. In laboratory cultures under constant low light intensities, chl a cell-1 increased by a factor of 5 while both Pmax and RuBPCase activity decreased by a factor of ca 4 compared with high light intensities. In changing light intensities both Pmax and RuBPCase activities were decreased by factors of 4 during low light intervals while chl a cell-1 approached a constant intermediate value. The change in chl a cell-1 in response to prolonged exposure to constant low light intensities was first order with a rate constant of 0.33 d-1. For all irradiance conditions in culture, the P-I dependence could be described by the simple Michaelis-Menten formula. The ratio of Pmax to KI, (the light intensity where P=Pmax/2) was a constant with a Coefficient of Variation of 12%: The constancy of this ratio, the parallel changes in RuBPCase activity with Pmax and the constant chl a cell-1 in the Sargasso Sea imply that for P. noctiluca and presumably P. fusiformis in nature, a dark enzymatic step rather than changes in photosynthetic pigment concentrations may regulate the photosynthetic capacity in the changing photic environment.Contribution no. 1141 from McCollum-Pratt Institute and Department of Biology, The Johns Hopkins University. Supported by DOE contract no. EY 76S20 3278, NSF no. OCE 76-02571 and ONR no. N300014-81-C-0062  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号