首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
在太原市7个点位采集采暖期PM10样品,用气相色谱-同位素质谱仪测定环境空气PM10和污染源(煤烟尘和机动车尾气)中9种多环芳烃(PAHs)的碳同位素组成(δ13C),并根据碳同位素质量平衡原理定量环境空气PAHs的源贡献率.结果表明:煤烟尘中PAHs随环数增加贫13C,机动车尾气中PAHs随环数增加富13C;各点位PAHs的δ13C值差别不大,变化趋势与煤烟尘基本一致,煤烟尘是城市PAHs的主要污染源;煤烟尘对各点位荧蒽和苯并[a]蒽的贡献率都大于机动车尾气,对 的贡献率与机动车尾气相当,煤烟尘是各点位荧蒽和苯并[a]蒽的主要来源, 是二者共同作用的结果;煤烟尘和机动车尾气对全市环境空气中荧蒽、苯并[ghi]荧蒽、苯并[a]蒽和苯并[b+k]荧蒽贡献率比都约为7:3,太原市环境空气PAHs污染属于煤烟尘和机动车尾气的复合污染.  相似文献   

2.
利用中流量大气综合采样仪采集太原市工业区和商业区PM10样品,使用GC/IRMS技术分析了PAHs的δ13C值(碳同位素组成),并根据碳同位素质量平衡计算了煤烟尘和机动车尾气对2类功能区的贡献率. 结果表明:工业区PM10中PAHs的δ13C值在-26.0‰~-24.5‰之间,随环数增加呈贫13C趋势,与煤烟尘δ13C值的变化趋势一致,表明煤烟尘是工业区的一个主要污染源;商业区PAHs的δ13C值在-26.6‰~-26.2‰之间,较工业区显著贫13C,商业区与工业区的污染源有明显差异;除机动车尾气和煤烟尘外,工业区和商业区还有其他污染源输入,其中工业区有生物质燃烧排放输入,商业区有机动车曲轴箱润滑油残渣输入;煤烟尘和生物质燃烧对工业区的贡献率分别为59.3%~70.8%和29.2%~40.7%,表明工业区煤烟污染严重;机动车对商业区PAHs的贡献率在86.1%~95.8%之间,是商业区PM10中PAHs的主要排放源,其中润滑油残渣的贡献率(在40.9%~85.3%之间)最大,机动车尾气的贡献率在8.3%~54.9%范围内,而煤烟尘的贡献率(在4.2%~13.9%之间)最小.   相似文献   

3.
郑州空气颗粒物中PAHs的碳同位素特征及来源   总被引:5,自引:1,他引:4       下载免费PDF全文
研究了郑州城区空气颗粒物中多环芳烃(PAHs)的稳定碳同位素组成特征并对其来源进行了解析.气相色谱/燃烧系统/同位素质谱(GC/C/IRMS)分析表明,PAHs 的δ13C 值在非采暖季为-29.4‰~-23.4‰,采暖季为-30.0‰~-24.2‰,随着分子量的增大,PAHs 中 13C 降低.统计表明不同采样点的样品中的 PAHs 的δ13C 区别不明显(0.1‰<σ<0.8‰).两个季节中,三环和四环多芳香烃化合物荧蒽、芘和苯并(a)蒽的δ13C没有明显的区别,其范围为-24.5‰~-23.4‰,但是,五环和六环芳烃的δ13C 值有明显差异.随着分子量的增大,采暖季环境空气颗粒物中 PAHs的碳同位素比值变小的程度比非采暖季的大.采暖季的苯并(a)芘、茚并(1,2,3-cd)芘、苯并(ghi)苝的δ13C 值分别为-26.6‰、-30.0‰和-28.1‰,而非采暖季为-24.5‰、-29.4‰和-26.3‰.利用二元复合同位素模型,估算了不同季节机动车尾气和煤的燃烧对郑州城区苯并(a)芘的贡献.在非采暖季机动车尾气排放的贡献率为 70%,在采暖季贡献率为 50%,煤的燃烧对六环化合物的贡献高于机动车排放的贡献.  相似文献   

4.
采集了厦门市冬春季(2008-12-04~2009-03-20)湖里工业区和大嶝岛旅游区大气PM10样品,用GC-MS定量了PM10负载的19种多环芳烃(PAHs),并结合采样期间气象资料对灰霾期和非灰霾期多环芳烃的差异特征进行对比分析.结果表明,冬春季采样期内,厦门市大气PM10中PAHs的浓度变化范围为12.93~79.27 ng.m-3,平均42.28 ng.m-3,比2004年冬季增长近3倍.灰霾期间PM10中PAHs总的质量浓度明显高于非灰霾期,并且灰霾期间低分子量组分菲、荧蒽和芘的质量分数显著下降,高分子量组分苯并[b]荧蒽、苯并[k]荧、苯并[a]芘、苝、茚并[1,2,3-cd]芘、苯并[ghi]苝和晕苯的质量分数相对升高.采用特征化合物比值、主成分分析与多元线性回归对来源与贡献率进行了分析和估算.灰霾期间识别出3类污染源:机动车尾气排放+天然气燃烧、煤燃烧和焦炉排放,其贡献率分别为62.7%、28.1%和9.2%;非灰霾期间同样识别出这3类污染源,其贡献率分别为48.6%、36.9%和14.5%.表明厦门市冬春季灰霾期间PM10中PAHs受本地源排放影响相对较多,非灰霾期间受北方燃煤长距离传输影响更显著.  相似文献   

5.
采集了乌鲁木齐市与郑州市非采暖季的环境空气颗粒物 ,用二氯甲烷做溶剂提取、硅胶柱层分离出多环芳烃样品 .用气相色谱 /燃烧系统 /同位素质谱测定了多环芳烃单化合物的稳定碳同位素组成 .结果表明 :这 2个城市的TSP与PM10 中多环芳烃单化合物稳定碳同位素组成相比较没有明显的区别 ;两城市的颗粒物样品中 ,分子量较小菲、蒽、荧蒽、芘和苯并 (e)芘的稳定碳同位素组成没有明显的区别 ,平均值范围为 - 2 3 4‰~ - 2 4 8‰ ,分子量较大的多环芳烃的δ13 C出现了明显差异 ,乌鲁木齐市环境空气颗粒物中多环芳烃单化合物的δ13 C随着其分子量的增大比郑州市更贫13 C ,乌鲁木齐市的环境空气颗粒物中的苯并 (a)芘、茚并 (1,2 ,3 cd)芘、苯并 (ghi)的δ13 C值分别为 - 2 8 3‰、- 31 8‰和 - 30 2‰ ,郑州市为 - 2 4 4‰、- 2 9 4‰和 - 2 6 3‰ .结合对两城市燃煤量和机动车拥有量的对比分析 ,本研究认为 :在非采暖季 ,这两个城市环境空气颗粒物中多环芳烃的污染主要是以煤的炭化、气化、燃烧以及机动车尾气为主的复合型污染 ,而机动车尾气...  相似文献   

6.
太原市空气颗粒物中正构烷烃分布特征及来源解析   总被引:6,自引:3,他引:3  
为明确城市空气颗粒物中正构烷烃分布特征及污染来源,采集采暖和非采暖季环境空气PM10样品和典型排放源(高等植物、燃煤和机动车)样品,利用GC-MS测定正构烷烃,选取诊断参数并结合污染源排放特征讨论PM10中正构烷烃分布和来源,采用主成分分析法定量解析源贡献率.结果表明,环境空气PM10中正构烷烃含量呈较强时空变化,采暖和非采暖季浓度分别为213.74~573.32 ng·m-3和22.69~150.82 ng·m-3,前者总浓度最高是后者的18倍;采暖季郊区点位(JY、JCP、XD和SL)浓度均高于市区,以JY最高(577.32 ng·m-3),非采暖季工业区(JS)总烷烃量(150.82 ng·m-3)明显高于其它点位,是SL总量的7倍.采暖季化石燃料来源烷烃(C n≤C24)与总烷烃量相关性优于植物来源烷烃(C n≥C25),非采暖季相反,表明前者化石燃料输入较后者高.CPI和%WNA指示非采暖季植物贡献率较采暖季高,且植物蜡烷烃随环境压力的增大总产率增加;C max和OEP表明非采暖季PM10中有机质成熟度低于采暖季;两季样品TIC图均存在UCM鼓包,机动车尾气是该城市的重要污染源.PCA解析结果表明太原市环境空气PM10中正构烷烃首要排放源为机动车尾气和高等植物,约占51.28%;其次为煤烟尘,贡献率为43.14%.煤烟尘污染控制协同机动车尾气净化措施的完善将成为降低城市空气颗粒物中正构烷烃浓度的有效途径.  相似文献   

7.
采集韶关市PM10和PM2.5样品,采用气相色谱-质谱法测定了16种PAHs的质量浓度,分析了16种PAHs在PM2.5中的时空分布特征,研究16种PAHs在PM10和PM2.5中分布的差异.结果显示:PAHs在PM2.5中的季节性分布具有冬、夏季高,春、秋季低的特点,且苯并[a]蒽、苯并[k]荧蒽、苯并[c]芘、苯并[a]芘、荧蒽等在一年四季含量均较高;在空间上的分布显示交通区>工业区>商业区>居民区>休闲区.PAHs在PM2.5中的分布明显高于在PM10中的分布,在人为活动较为频繁的季节和区域,PAHs的含量明显增加.  相似文献   

8.
太原市PM10及其污染源中碳的同位素组成   总被引:1,自引:0,他引:1       下载免费PDF全文
通过采集太原市PM10及其主要源(煤烟尘、机动车尾气尘、土壤风沙尘)样品,结合离线分步加热氧化法和同位素质谱仪测定了颗粒物中有机碳(OC),元素碳(EC)和总碳(TC)的同位素组成, 并探讨了太原市PM10中碳的来源.结果表明,太原市冬季、春季PM10中OC、EC和TC的碳同位素组成分别是-34.7‰、-23.5‰、-23.9‰和-30.5‰、-23.1‰、-23.9‰; 煤烟尘中OC、EC和TC的碳同位素组成分别是-26.5‰、-23.2‰、-23.6‰,土壤风沙尘分别为-24.6‰、-14.1‰、-17.3‰,汽油车和柴油车尾气尘分别为-27.7‰、-25.5‰、-27.0‰和-25.7‰、-24.3‰、-24.8‰. EC和TC的同位素组成是区分土壤风沙尘较好的标识指标,TC的同位素组成是汽油车尾气尘较好的标识指标;利用二元复合计算公式结果显示土壤风沙尘中OC、EC占TC的百分含量分别为30%、70%;煤烟尘中OC、EC占TC的百分含量分别为11%、89%;汽油车尾气尘中OC、EC占TC的百分含量分别为78%、22%,柴油车尾气尘中OC、EC占TC的百分含量分别为36%、64%;太原市PM10中的TC和EC主要来源于煤烟尘,OC少部分来源于机动车尾气排放,另外还有其他的重要贡献源.  相似文献   

9.
珠江广州段沉积物中PAHs生态风险的蒙特卡洛模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
以珠江广州段24个采样站位表层沉积物的实测16种多环芳烃(PAHs)浓度为基础资料,采用基于Logistic混沌迭代序列改进的蒙特卡洛算法对珠江广州段沉积物中PAHs的生态风险发生概率进行了定量分析.研究结果表明:PAHs风险排序从大到小依次是:菲>芘>荧蒽> >苯并[a]蒽>苯并[a]芘>二苯并[a,h]蒽.菲、芘和荧蒽引发水生生态风险概率较大,应重点关注.除菲外,其余6种PAHs暴露浓度对生态风险发生概率的贡献率均超过90%,可见PAHs在本区域环境中的风险大小主要取决于其暴露量.  相似文献   

10.
中国主要河流中多环芳烃生态风险的初步评价   总被引:18,自引:5,他引:13       下载免费PDF全文
以现有的中国主要河流中多环芳烃(PAHs)的浓度数据为基础,通过定义1个危害商,利用商值法筛选出菲、蒽、荧蒽、芘、苯并[a] 蒽、 和苯并[a]芘7种对水生生态具有潜在风险的PAHs.以河流水相中PAHs浓度数据为依据,结合毒性数据库中PAHs水相浓度对水生生物的毒性数据,用概率风险评价法分析了这7种PAHs对水生生物的生态风险.结果表明,7种筛选出的PAHs风险大小依次为:蒽>芘>苯并[a]蒽>荧蒽>苯并[a]芘>菲> .  相似文献   

11.
海口市PM_(2.5)和PM_(10)来源解析   总被引:2,自引:1,他引:1       下载免费PDF全文
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著.  相似文献   

12.
机械炼焦过程生成飞灰中多环芳烃分布特征研究   总被引:5,自引:4,他引:1  
牟玲  彭林  刘效峰  白慧玲  张建强 《环境科学》2013,34(3):1156-1160
为了明确炼焦过程生成飞灰中多环芳烃(PAHs)的污染特征,采集3个不同类型焦化厂飞灰样品,利用GC-MS对其中16种EPA优控PAHs进行了定量分析,并研究了不同飞灰中PAHs的分布特征及潜在毒性特征.结果表明,炼焦飞灰中PAHs总量在8.17×102~5.17×103μg·g-1之间.炭化室高3.2 m捣固焦炉生成飞灰中PAHs含量是炭化室高6 m顶装焦炉的2倍,且同一个焦化厂装煤过程生成飞灰中PAHs含量明显高于推焦过程.炼焦飞灰中PAHs以4环和5环为主,二者之和平均占PAHs总量的80.00%以上,且以、苯并[a]蒽和苯并[b]荧蒽含量最高.飞灰中PAHs的苯并[a]芘毒性当量(BaPeq)浓度范围在1.64×102~9.57×102μg·g-1.从致癌性角度而言,除苯并[a]芘外,二苯并[a,h]蒽对PAHs总体毒性贡献值最大,占毒性总量的15.32%,其次为苯并[a]蒽和苯并[b]荧蒽.装煤过程BaPeq毒性当量浓度为出焦过程的5.21倍,在对炼焦装煤和出焦过程形成的飞灰再利用时应根据其各自的PAHs毒性特征考虑不同的利用方式.  相似文献   

13.
南京市大气可吸入颗粒物中多环芳烃的分布状况   总被引:2,自引:0,他引:2  
采集南京市大厂和山西路两地区四季度大气PM10样品,用索氏提取-高效液相色谱技术分析其多环芳烃组成及含量,结果表明,两地区多环芳烃总量在42.561ng/m3~121.890ng/m3之间,大厂区浓度明显高于山西路地区,是山西路地区的1.169~2.628倍。大厂地区PAHs总量受季节影响不大,山西路地区浓度与季节呈一定的相关性,即春季>冬季>夏季>秋季,两地区PAHs中蒽、荧蒽、苯并[b]荧蒽、苯并[g,h,i]苝含量相对都较高,表明燃煤和交通是南京市的主要污染源,大厂区燃煤污染更为明显。  相似文献   

14.
城市隧道汽车尾气中多环芳烃排放特征的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
对广州市珠江隧道进行了汽车尾气中颗粒相多环芳烃(PAHs)的排放因子测试,研究了汽车组成、交通流量、隧道内微气象及PAHs成分和浓度水平,采用质量平衡模型和多元线性回归方法计算了8种车型共14种PAHs的综合排放因子.结果表明,汽车尾气颗粒相PAHs的主要检出物为萘、苊烯、苊、蒽、菲、荧蒽、芘、苯并(a)蒽、、苯并[a]芘、苯并(k)荧蒽、茚并(1,2,3-c,d)、二苯并(a,h)蒽、苯并(g,h,I)苝等14种成分,隧道进口处PM10中∑PAHs浓度为(5.000±1.762)μg/m3,隧道出口处PM10中∑PAHs浓度为(27.067±3.602)μg/m3,其中四环以上的PAHs含量占74.9%.在平均车速为46km/h条件下,隧道内机动车尾气颗粒物中∑PAHs平均排放因子高达16.203mg/(km·辆),其中各PAHs化合物排放因子均超出欧洲或美国的100倍以上.  相似文献   

15.
典型污灌区土壤中多环芳烃的垂直分布特征   总被引:21,自引:0,他引:21       下载免费PDF全文
研究了有污水灌溉历史的沈抚灌区、浑浦灌区和清原对照点3个土壤剖面多环芳烃(PAHs)含量的分布特征.结果表明,在美国EPA优先控制的16种PAHs中,沈抚灌区土壤剖面中检测出10种,浑浦灌区检出12种,清原检出8种.PAHs总含量峰值随着土壤深度的增加呈下降趋势,但最高值均未出现在0~2 cm土层,而是分布在2~5和5~10 cm土层.各剖面单组分分布以4~5环PAHs为主,主要污染物是荧蒽、苯并[a]蒽和苯并[k]荧蒽,低环PAHs含量峰值多集中在0~2 cm土层,中、高环PAHs大部分分布在5~10 cm土层.从单组分比值和母体多环芳烃比值可以看出,3个剖面的PAHs污染源来自于汽油、原油、煤的不完全燃烧,或通过污水灌溉,或以烟尘颗粒为载体通过大气干、湿沉降和风力输送进入到土壤环境中.   相似文献   

16.
采用超声提取-同步荧光法测定了龙岩市区不同功能区土壤中的多环芳烃(PAHs)。结果表明,闽西监狱良种繁殖园土样中含有苯并[a]芘和荧蒽,龙洲工业园土样中含有苯并[a]芘、荧蒽、苯并[k]荧蒽、咔唑和艹屈,龙岩三德水泥厂土样中含有苯并[a]芘、荧蒽、菲和蒽。该法简便快速,无需对混合物进行分离,就可实现多组分的同时鉴别和定量测定。方法的检出限在0.052~12.37ng/mL,标准偏差为0.017~4.12,此方法用于分析闽西监狱良种繁殖园土样、龙洲工业园土样和龙岩三德水泥厂土样中的多环芳烃取得良好效果,回收率分别为68.15%~99.28%、75.40%~109.9%、78.31%~103.1%。  相似文献   

17.
台州湾围塘养殖水体中多环芳烃的浓度及来源   总被引:4,自引:0,他引:4  
采集台州湾6个代表性点位的围塘养殖水体表层水,分析其中15种多环芳烃(PAHs)的含量,探讨其可能的来源.结果表明,水体中总PAHs平均含量为8 309.4 ng·L-1,变化范围为5 868.7~1 5156.1 ng·L-1,PAHs的组成以2-3环为主.荧蒽/(荧蒽 芘)和茚并[1,2,3-cd]芘/(茚并[1,2,3-cd]芘 苯并[g,h,i])苝比值表明,台州湾围塘养殖水体中的多环芳烃主要来自于化石燃料的燃烧.  相似文献   

18.
淮河中下游沉积物PAHs的稳定碳同位素源解析   总被引:1,自引:0,他引:1  
对淮河中下游水相、悬浮物、沉积物中的PAHs(多环芳烃)进行定量分析,在探讨其分布特征的基础上,利用单体烃稳定碳同位素技术揭示研究区沉积物中PAHs的来源. 结果表明:水相中正阳关的ρ(PAHs)最高,达5.01 ng/mL;悬浮物和沉积物中以蚌埠闸的w(PAHs)最高,分别为9.85和1 175.02 ng/g. 沉积物中PAHs的δ13C在-39.4‰~-17.6‰之间.正阳关、平圩、洛河和蚌埠闸等采样点的高环PAHs的δ13C比低环PAHs的小,表明高环PAHs富集12C(轻碳同位素),显示燃煤源为主要污染源;但这4个采样点PAHs的δ13C与燃煤烟尘相比存在一定差异,表明除燃煤源外可能还存在着少量其他污染源. 双沟镇高环PAHs的δ13C比低环PAHs的大,表明高环PAHs富集13C(重碳同位素),可能是微生物作用所致.   相似文献   

19.
为研究辽东湾PAHs(多环芳烃)在海水-沉积物之间的扩散行为,于2014年5月对辽东湾14个采样点海水和沉积物中的16种PAHs进行了调查研究,并采用逸度方法、变异系数、响应系数等统计和计算方法对研究结果进行分析.结果表明:辽东湾海水中ρ(∑PAHs)和沉积物中w(PAHs)的平均变异系数分别为0.25和0.39,属于中等变异,高分子量PAHs的变异系数高于低分子量PAHs;利用ff(逸度分数)评估PAHs在海水-沉积物间的扩散行为,Nap(萘)、Acp(苊)和Fl(芴)表现出从沉积物向海水释放,沉积物是二次释放源;Ace(二氢苊)、Phe(菲)、An(蒽)、Flu(荧蒽)、Pyr(芘)、BaA(苯并[a]蒽)、Chr(?)在海水-沉积物之间接近平衡状态,5环和6环PAHs则表现出从海水向沉积物沉降富集,沉积物是汇;有机碳和碳黑是影响PAHs在沉积物和海水之间扩散的重要参数.研究显示,7种潜在致癌PAHs[BaA、Chr、BbF(苯并[b]荧蒽)、BkF(苯并[k]荧蒽)、BaP(苯并[a]芘)、InP(茚并[1,2,3-cd]芘)和DbA(二苯并[a,h]蒽)]海水-沉积物之间的扩散行为可能受到陆源排污和海上石油开发活动的影响.   相似文献   

20.
本研究对太原市采暖期PM2.5中多环芳烃(PAHs)的污染水平、组成特征、健康风险以及来源进行了分析。结果表明,太原市采暖期PM2.5的日均浓度水平为70.7~274.2μg/m3,90%的样品超过了我国《环境空气质量标准》(GB 3095-2012)中PM2.5的二级标准限值(75μg/m3)。PM2.5中16种PAHs的浓度水平为282.7~1 398.6ng/m3,平均值为915.7ng/m3。荧蒽(Fla)是浓度最高的单体,占PAHs总浓度的20.4%,其次是芘(Pry)和菲(Phe),分别占14.5%和13.2%。不同环数的PAHs质量浓度为4环5~6环2~3环。以苯并(a)芘(Bap)为参照对象的昼夜毒性当量浓度Bapeq分别为75.5和100.0ng/m3,高于我国和WHO对Bap的规定值(分别为2.5和1ng/m3),对人体健康存在潜在危害。根据PAHs环数分布及特征比值法判断PAHs的主要来源是煤燃烧,同时也存在一定的生物质燃烧和少部分石油燃烧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号