首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微波/活性炭强化过硫酸盐氧化处理垃圾渗滤液研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用微波(MW)-活性炭(AC)强化过硫酸盐(PS)氧化处理垃圾渗滤液,研究不同因素对垃圾渗滤液处理的影响,比较不同组合工艺对渗滤液处理的效果及活性炭的多次使用情况.结果表明,COD和氨氮(NH4+-N)的去除率随着AC用量、PS用量(S2O82-:12COD0)、MW功率和辐射时间的增加而增大,pH值对COD的去除影响不明显, NH4+-N在碱性条件下得到更理想的去除效果;在活性炭用量为10g/L,PS用量为S2O82-:12COD0=1.2,pH=9,MW功率和辐射时间分别为500W和10min时,垃圾渗滤液中的COD和NH4+-N去除率分别为78.2%和67.2%,BOD5/COD由0.17增至0.38;不同工艺对垃圾渗滤液处理效果显示,MW-AC-PS工艺对垃圾渗滤液中COD和氨氮去除率明显高于其他处理,且MW、AC和PS之间存在协同效应,MW热效应显著;活性炭四次实验后,COD和NH4+-N的去除率分别为61.2%和46.1%.  相似文献   

2.
微波催化氧化法预处理垃圾渗滤液的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
采用微波-活性炭-Fenton催化氧化预处理垃圾渗滤液,研究了不同因素对垃圾渗滤液处理效果的影响.结果表明,COD和氨氮去除率随活性炭用量、微波辐射时间和微波功率增加而增加;随Fe2+用量和H2O2用量增加,COD和氨氮去除率先增加而后下降;随pH值增加,氨氮去除率显著增加,COD去除率变化不明显.在微波功率为300W,pH值为8,活性炭9g/L,Fe2+用量为0.02mol/L,H2O2用量为7mL/L,辐射时间6min条件下,垃圾渗滤液中COD和氨氮去除率分别达到68.22%和78.08%,SS去除率达到78.55%,浑浊度去除率达到99.02%,颜色由黑褐色去除为接近无色,BOD5/COD由0.21提高到0.45;研究比较了不同处理对垃圾渗滤液的处理效果.结果显示,微波催化氧化对垃圾渗滤液中COD和氨氮去除率明显高于其他处理.  相似文献   

3.
不同土壤对垃圾沥滤液净化效能研究   总被引:1,自引:0,他引:1  
通过土柱模拟实验比较了不同土壤对垃圾沥滤液中高浓度污染物NH4+-N和COD的去除效率。结果表明不同类型土壤对垃圾沥滤液的处理效果有明显差异。紫色土对沥滤液NH4+-N的去除效率可达到95%以上,COD去除率较低;腐殖土对COD去除率最高,出水NH+4-N含量随pH值的上升迅速下降;与腐殖土相比,黄壤对NH+4-N的去除效果较高,对COD的去除率较低。随进水次数增加,土柱对渗滤液中污染物的去除效率明显降低。  相似文献   

4.
活性炭和沸石组合吸附渗滤液中COD_(cr)和氨氮的试验研究   总被引:1,自引:0,他引:1  
经过Fenton试剂氧化处理后的垃圾渗滤液用于吸附处理试验,试验分别得到活性炭和沸石的最佳反应pH值和反应时间后,将活性炭和沸石组合吸附渗滤液,4种吸附处理方式去除垃圾渗滤液中CODcr的能力为:活性炭-沸石沸石-活性炭活性炭活性炭/沸石;去除垃圾渗滤液中NH3-N的能力为:活性炭/沸石活性炭-沸石沸石沸石-活性炭。根据对比分析,确定了最佳吸附工艺应为活性炭-沸石组合工艺,该工艺对CODcr和NH3-N的去除率分别达到74.11%和80.86%。  相似文献   

5.
对比分析MBR和MBBR工艺对玉米深加工废水的处理效果及系统稳定运行能力。结果表明,2个工艺对COD、NH4+-N、TN平均去除率分别为93.6%、85.8%,91.5%、80.1%,43.8%、41.3%,MBR工艺污染物去除能力优于MBBR,具有更为稳定良好的出水水质;试验期间,MBR工艺COD、NH4+-N去除率基本稳定在80%以上,系统有机负荷及氨氮负荷波动范围小于MBBR,表现出较强的耐冲击负荷能力。结果还显示,工艺进水COD/NH4+-N浓度增加,将对NH4+-N去除产生不利影响。  相似文献   

6.
电化学氧化法处理高浓度垃圾渗滤液的研究   总被引:24,自引:0,他引:24  
实验利用电化学氧化法法除垃圾渗滤液中部分难降解有机物,以提高废水的可生化性,为后续生物处理创造条件。系统考察了温度、极板间距、氧离子浓度、pH值等因素对电化学处理垃圾渗滤液效果的影响,并通过GC-MS分析,探讨渗滤中有机污染物的去除情况,包括渗滤液中典型有毒难降解有机化合物的电化学氧化结果。结果表明:温度升高,COD和NH2-N的去除率均提高;极板间距太大或太小都会降低去除效果,极板间距10mm,处理效果较好,COD和NH3-N去除率分别达到86%和100%;随着渗滤液中Cl^-浓度的增加,COD去除率明显提高,同时高浓度Cl^-和较高的电流密度对垃圾渗滤液中难降解有机污染物的处理有相当强的协同作用效应,可以明显提高处理效果;在强酸性和强碱性条件下的电化学反应都不利于对COD、NH3-N的去除;在添加Cl^-4000mg/L,极板间距为10mm,电流密度为15A/dm^2,pH为8,初始温度为50℃的条件下,经4h的电化学氧化,COD、氨氮和色度的去除率分别达88%、100%和98%,苯酚的去除率为82%,电流效率可达84%以上。可见电化学氧化法不仅可有效的去除COD、氨氮、色度,而且对有毒的难降解有机污染物(苯酚等)有很好的去除作用,采用电化学氧化作为垃圾渗滤液废水处理的前处理,可大大改善后续生物处理的效果。  相似文献   

7.
采用前置生态塘-表流人工湿地-卵石过滤带组合工艺处理山地城市地表径流,研究了各单元在COD、TN、TP和NH4+-N方面的去除效果,以及径流中COD浓度和氮素形态对污染物去除的影响。结果表明,针对COD、TN、TP和NH4+-N,生态塘可以达到82%、53%、45%和32%的去除,表流人工湿地可以达到82%、83%、80%和61%的去除。COD由60 mg/L升至500 mg/L时,整个组合工艺的TP去除率由61%升至82%后下降至64%,TN去除率由50%提高至82%,NH4+-N去除率由67%降至41%。氮素组成对TN和COD的去除影响较大,NH4+-N∶NO3--N由3∶1变为1∶3时,COD去除率从73%提高到85%,TN去除率从53%提高到86%,NH4+-N去除率变化不大,为45%~51%。该组合工艺能够有效去除和削减城市地表径流中的COD、TN和TP的污染。  相似文献   

8.
采用UASB+MBR+NF工艺处理生活垃圾堆场渗滤液,分析了该工艺对COD和NH_4~+-N的去除效果,对设备运行维护、絮凝剂投加、指标控制方法提出了建议。实验结果表明,该工艺对COD和NH_4~+-N的去除率可分别达到90%和95%以上,出水ρ(COD)100 mg/l、ρ(NH_4~+-N)15 mg/l,出水水质满足《生活垃圾填埋污染控制标准》(GB16889-1997)一级标准要求。  相似文献   

9.
应用沸石和粉煤灰加气砼颗粒分别作为滤池填料联合处理渗滤液和生活污水混合水,前处理池为天然沸石填料滤池,通过吸附去除混合污水中NH4+-N,调节出水中C/N,使其处于15~30范围内,为后处理池(曝气生物滤池)废水处理提供有利条件。得出沸石添加量为80%时,前处理池出水C/N达到15.59,适宜后处理池生物处理工艺条件。在渗滤液与生活污水配比为1/1时,进水COD、NH4+-N浓度分别为6 749.31、1 538.20 mg/L,不同水力负荷对前处理池出水C/N具有一定影响,在水力负荷为36.74 m3/(m3·d)时,C/N最大为19.27,此时后处理池COD、NH4+-N去除率最高,分别为80.63%、68.75%。整个系统COD、NH4+-N去除率在水力负荷为36.74 m3/(m3·d)时达到最大,分别为89.75%和96.50%,其出水中COD、NH4+-N浓度分别为687.67和57.58 mg/L。  相似文献   

10.
采用"预处理+UASB+MBR+NF+RO"工艺处理某生活垃圾焚烧厂渗滤液,工程规模为250 m~3/d,以该电厂一年的污水处理监测数据为依据,分析该工艺以及各处理单元(UASB、MBR和膜系统)对垃圾渗滤液主要污染物的去除效果。结果表明:UASB对COD、BOD_5、NH_3-N、TP和色度的平均去除率分别为83.29%、73.76%、-0.29%、21.04%和64.84%;MBR对COD、BOD_5、NH_3-N、TP和色度的平均去除率分别为87.48%、99.58%、97.22%、90.94%和34.65%;膜系统对COD、BOD5、NH3-N、TP和色度的平均去除率分别为96.56%、63.15%、90.65%、94.81%和98.18%;"预处理+UASB+MBR+NF+RO"组合工艺对COD、BOD_5、NH_3-N、TP和色度的平均去除率分别为99.93%、99.96%、99.74%、99.65%和99.80%,出水平均水质达到《城镇污水处理厂污染物排放标准》一级A排放标准。  相似文献   

11.
高氮城市生活垃圾渗滤液短程生物脱氮   总被引:5,自引:2,他引:5  
采用"两级UASB-缺氧-好氧系统"处理高COD与高NH4 -N的城市生活垃圾渗滤液.180天的试验结果表明:UASB1(一级UASB)与UASB2(二级UASB)最大COD去除速率分别为12.5、8.5 kg·m-3·d-1,UASB1的NOx--N的最大去除速率为3.0 kg·m-3·d-1.系统COD去除率为80%~92%,出水COD为800~1500 mg·L-1.原渗滤液的NH 4-N为1100~2000 mg·L-1,A/O工艺的最大NH4 -N去除速率为0.68kg·m-3·d-1;在17~30℃,通过NO-2-N累积率为90%~99%的短程硝化,NH4 -N的去除率在99%左右,出水NH4 -N小于15 mg·L-1.回流处理水和二沉池回流污泥中的NOx--N分别在UASB1和A/O工艺的缺氧段实现完全反硝化,使系统无机氮TIN去除率达80%~92%.同时高效的反硝化为硝化提供了充足的碱度,使A/O工艺pH大于8.5,维持较高的游离氨浓度,结果表明,高游离氨(FA)是导致短程硝化的主要因素.以pH作为控制参数调控A/O工艺的曝气时间,可以有效的抑制亚硝酸盐氧化菌(NOB)的增长,实现种群优化和稳定的短程硝化.  相似文献   

12.
白轩  潘大伟  王翠艳  胡筱敏 《环境工程》2013,(Z1):285-287,291
对辽宁省鞍山市某生活垃圾卫生填埋场的晚期垃圾渗滤液进行预处理,选择MgO和磷矿粉两种矿物,利用共沉淀法去除垃圾渗滤液中的氨氮,用于制备磷铵镁复合肥,实现垃圾渗滤液的资源化利用。实验结果如下:MgO与磷矿粉配合使用,能够较好地去除垃圾渗滤液中COD和氨氮。采用MgO、磷矿粉共沉淀法生成磷铵镁复合肥具有可行性,同时可为后续生化处理创造良好的条件;在给定条件下(氨氮浓度1200 mg/L,COD 3180 mg/L),垃圾渗滤液COD去除的最优实验条件为MgO添加量5.0 g/L、磷矿粉添加量100 g/L,反应时间4 h,处理后COD去除率为62.1%,氨氮去除率为87.5%;氨氮去除的最优实验条件为MgO添加量10 g/L、磷矿粉添加量60 g/L、反应时间4 h,处理后COD去除率为42.1%,氨氮去除率为96.1%。  相似文献   

13.
采用UBF(厌氧复合床反应器)-AOMBR(缺氧/好氧膜生物反应器)工艺处理垃圾渗滤液,考察该工艺组合的可行性并作为该领域工程应用的参考。试验结果表明:当进水渗滤液COD浓度10000mg/L左右,NH4+-N浓度2000mg/L左右时,出水COD浓度为1000mg/L,出水NH4+-N浓度为50~100mg/L,COD总去除率>90%,NH4+-N去除率95%左右。UBF最大COD容积负荷为6~7kg/(m3.d)。pH、碱度、回流比是影响系统稳定运行的重要因素。当AOMBR系统MLSS>10000mg/L时,膜污染严重,采用酸、碱、NaClO溶液清洗后膜性能恢复为原来的75%左右。  相似文献   

14.
回灌+铁促电化学氧化工艺处理垃圾渗滤液研究   总被引:3,自引:0,他引:3  
垃圾渗滤液是一种高有机物浓度,高NH3-N浓度,多组分难处理的污水。文章在现有的理论和实践基础上论证了矿化垃圾回灌+铁促电解工艺,处理垃圾渗滤液的可行性,并进行了初步试验。试验结果表明该工艺可以有效地去除渗滤液中的COD、NH3-N和色度,是具有较大研究价值的渗滤液处理工艺。  相似文献   

15.
采用2个微曝气(0.1 L/min)矿化垃圾反应器处理渗滤液,研究进水频次对矿化垃圾处理渗滤液效果的影响。结果表明:在进水频次为1次/d和2次/d的条件下,提高进水频次可促进COD、NH4+-N和总磷的去除,促进NO2--N向NO3--N的转化,但对总氮的去除无促进作用。进水频次2次/d时,COD、NH4+-N和总磷的平均去除率分别达到83%、95.8%和96%,高于进水频次1次/d的68%、88.3%和87%。但两者总氮平均去除率相差不大,进水频次1次/d时总氮平均去除率为48.7%,高于进水频次2次/d的46.4%。  相似文献   

16.
为了探索高效垃圾渗滤液处理工艺,采用生物接触氧化—电絮凝工艺处理垃圾渗滤液。试验结果表明,生物接触氧化—电絮凝工艺适于处理COD<5000mg/L的垃圾渗滤液,最高容积负荷可达6.56kgCOD/(m3.d),对COD去除率最高可达84.63%,平均BOD去除率可达91.25%,对NH4-N去除率最高可达86.13%,处理后的垃圾渗滤液可达到国家垃圾渗滤液二级排放标准。处理费用估算为10元/m3。  相似文献   

17.
研究了Fenton试剂氧化处理垃圾渗滤液的最佳反应条件,在此条件下进行活性炭、沸石组合吸附法试验,并对处理效果进行比较,结果显示:在pH值为4,n(H2O2)/n(Fe2+)=10,反应时间60 min,沉淀时间90min时,Fenton试剂对渗滤液的氧化效果最好;三种组合吸附方式对渗滤液中COD的吸附效果依次为活性炭-沸石>沸石-活性炭>活性炭+沸石;对垃圾渗滤液氨氮的去除能力为:活性炭+沸石>活性炭-沸石>沸石-活性炭。经过Fenton试剂氧化-活性炭+沸石吸附处理后,COD、氨氮、色度和pH值分别为82.05 mg/L、22.65 mg/L、5倍和6.25。分析有机物的去除机理分析得出,经过Fenton试剂氧化-活性炭+沸石吸附处理,垃圾渗滤液中的有机物能够得到充分降解,其种类与各物质的含量都有所降低,特别是氨氮的含量和色度明显降低。经氧化吸附处理后,垃圾渗滤液各项指标均符合排放标准。  相似文献   

18.
用改性硅藻土、活性污泥处理城市垃圾渗滤液的研究   总被引:5,自引:0,他引:5  
周跃光 《云南环境科学》2004,23(Z1):143-145
改性硅藻土对城市垃圾渗滤液处理仅限于去除渗滤液中的悬浮物.悬浮物和色度的去除率分别大于98%和96%,CODcr的去除率仅为18.1%~26.4%,而对NH3-N的去除没有任何作用.用特殊驯化过的活性污泥进一步处理改性硅藻土处理后的渗滤液,CODcr又可去除80%,NH3-N去除85%,处理废水达到垃圾渗滤液排放二级标准.  相似文献   

19.
三级生物膜深度处理腈纶废水生化出水的脱氮研究   总被引:3,自引:3,他引:0  
针对腈纶废水生化出水用传统脱氮工艺深度脱氮时碳源不足的问题,采用三级生物膜反应器作为深度处理装置,研究了反应器的启动及进水pH、水力停留时间(HRT)、进水氨氮(NH4+-N)浓度对NH4+-N去除率的影响并确定其最佳运行条件及最佳条件下总氮(TN)的去除效果.结果表明,在HRT为24 h,进水pH为7.8~8.0条件下反应器对NH4+-N和TN的去除效果最佳,平均去除率分别为94.6%和53%;且进水NH4+-N浓度对其去除效果没有明显影响;反应器在不投加有机碳源情况下,对TN有明显去除效果,平均去除率53%,最高去除率达66%,表明三级生物膜反应器深度处理腈纶废水时脱氮效果明显.  相似文献   

20.
采用单因素试验分析了多功能复合微生物制剂MCMP处理垃圾渗滤液的反应条件,结果表明:投加MCMP能促进渗滤液COD、NH3-N、TP的去除,在反应时间72 h,间歇曝气36h,接种量(VMCMP:V水)为1/8000,进水pH值8时处理效果较好,去除率分别达到37.56%、72.74%、51.56%。MCMP技术与生物膜法联合处理垃圾渗滤液的试验表明:同单纯使用MCMP菌处理渗滤液相比,以陶粒为填料的MCMP生物膜系统,对TP的去除效果有明显提高,去除率达到65.23%,对COD和NH3-N去除率影响不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号