首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《中国环保产业》2014,(4):70-71
正由中钢集团武汉安全环保研究院有限公司开发的垃圾渗滤液生化物化综合处理技术,适用于垃圾填埋场、焚烧厂渗滤液处理。主要技术内容一、基本原理针对垃圾渗滤液水质情况,采用"预处理+生物处理+深度处理组合工艺"。经收集的垃圾渗滤液先采用混凝沉淀、氨吹脱(氨浓度高的填埋场渗滤液)等方式,去除其中大量污染物及高浓度的氨,同时调节水质的pH值等参数使其符合后续生化处理。预处理后的渗滤液经厌氧、好氧生物处理,进一步去除COD、BOD、SS、氨氮  相似文献   

2.
《中国环保产业》2005,(10):46-46
由烟台德利环保工程有限公司开发的垃圾渗滤液处理技术及装置,适用于大中小城市生活垃圾填埋场渗滤液、垃圾中转站渗滤液的处理。主要技术内容一、基本原理先通过专用絮凝剂利用物化原理将废水中重金属、悬浮物等不利于生化的有害物除去,再进行中温厌氧, 去除75%左右的CODcr。厌氧出水经好氧 兼氧,可有效脱氮并去除CODcr、BOD5等,再经物化深度处理,出水指标达到一级排放标准。垃圾渗滤液经格栅沉砂池,去除大的悬浮渣质及砂  相似文献   

3.
李为实 《四川环境》2021,40(2):160-164
为了在达标排放的基础上降低建设规模为Ⅲ类、Ⅳ类型(中小型)垃圾填埋场处理垃圾渗滤液的人工及成本投入,提高系统稳定性,分析了泗县垃圾填埋场2018年3~12月渗滤液处理的运行状况。通过采用“预处理+两级碟管式反渗透+吹脱”的高度自动化工艺对垃圾渗滤液进行处理。结果表明:使用该系统处理后出水CODCr浓度低于26mg/L,NH3-N浓度低于15mg/L,各项出水指标均满足排放标准的要求,系统自动化程度高、稳定性好、且工程总投入834万元、运行期间处理每吨渗滤液花费为56.18元,成本较低适用性好。  相似文献   

4.
处理城市垃圾填埋场渗滤液的新工艺   总被引:3,自引:0,他引:3  
本文针对城市生活垃圾渗滤液的特点,提出了混凝-SBR法处理工艺。试验结果表明,经该工艺处理的垃圾渗滤液各项指标可达国家规定的排放标准。  相似文献   

5.
史春 《环境教育》2010,(12):50-50
垃圾填埋场在填埋垃圾以后,会产生高浓度的有机废水,即渗滤液。渗滤液的特点是成分复杂、有机物含量高,垃圾填埋以后渗滤液会连续多年持续产生。因此,为防止对环境的污染,垃圾填埋场必须对渗滤液进行处理,达标后方可排放。  相似文献   

6.
以成都周边80km范围内的8个行政村为调查对象,对区域内这些村垃圾渗滤液的污染状况、产量、水质进行研究,并探讨臭氧氧化联合活性炭吸附处理该渗滤液的技术可行性。结果表明:生活垃圾集中处理的农村,垃圾渗滤液呈收集点、填埋场或焚烧厂周围的多点污染现象;生活垃圾分散处理的农村,垃圾渗滤液呈排放于农田或河流的面源污染现象;在研究区域内,每村垃圾渗滤液的产量为0.07~0.60 t/d;农村垃圾渗滤液的色度、COD、BOD_5、NH_3-N分别为160~1 735倍、611.24~25 396.25 mg/L、124.13~5 241.44 mg/L、26.341~1 751.950 mg/L,BOD_5/TP、NH_3-N/TP比值在221~449和36~174之间,其水质污染物主要是有机物和氮素的复合污染,且碳氮磷比例严重失调。臭氧氧化探究表明,在25℃、臭氧投量1.30g/h、初始p H为8的条件下,反应50min后,出水p H近中性,出水色度、COD、BOD_5的去除率分别达到了90.39%、90.43%和84.78%。再经活性炭填料吸附后,NH_3-N、TP去除率达72.00%、88.79%。即上述6个指标均达到GB16889-2008中水污染物的特别排放限值,故采用臭氧氧化联合活性炭吸附法处理农村垃圾渗滤液具有绿色、高效和技术可行性。  相似文献   

7.
姚小丽  秦侠  雷蕾  苏静芝 《四川环境》2007,26(4):97-101
城市垃圾对环境的影响越来越严重,垃圾填埋导致垃圾渗滤液的大量产生,渗滤液中含有大量的有机物、大量的病菌、病毒、寄生虫等以及一些有毒有害的物质,若渗滤液不加以妥善处理、肆意排放,必将对地下水、地表水构成严重威胁,因此垃圾渗滤液的有效处理就成为一个亟待解决的问题。本文对城市垃圾填埋场渗滤液的处理工艺进行了分析和探讨,介绍了国内外垃圾渗滤液处理的主要技术,包括土地处理法、生物法和物化法,并对电解法处理垃圾渗滤液进行了详细的介绍。  相似文献   

8.
徐高平 《青海环境》2008,18(2):91-94
城市垃圾渗滤液是一种成分复杂的高浓度有机废水,若不加处理直接排放,会造成严重的环境污染。以保护环境为目的,对渗滤液进行处理是必不可少的。文章介绍了我们在设计国内某垃圾渗滤液处理厂所采用的工艺流程,此方法是采用高效生化处理与现代化膜技术工艺深度处理相结合来处理垃圾渗滤液。  相似文献   

9.
信息窗     
信息窗石油化工污水NH3-N达标的探讨随着石油化工产品的增加及深度加工,其排放污水中NH3-N经中和沉淀,生化处理后仍达不到国家排放标准,为促使石油化工外排污水NH3-N达标提出了A/0生物膜脱氮、过氧化脱氮、碱化曝气吹脱氮及程序间歇式多级生物氧化法...  相似文献   

10.
应用脱氨塔蒸汽汽提将渗滤液中的游离氨回收并用于烟气脱硝,不仅解决了渗滤液中氨氮浓度高的问题,而且为烟气脱硝提供了还原剂.文章通过分析垃圾焚烧量1000t/d、渗滤液产生量500t/d、氨氮含量约4000mg/L的垃圾焚烧发电厂运用此工艺的效果,为垃圾渗滤液处理行业提供了参考.  相似文献   

11.
垃圾渗滤液中氨氮去除技术评价及应用   总被引:1,自引:0,他引:1  
垃圾卫生填埋过程中会产生有毒有害的垃圾渗滤液。垃圾渗滤液中的高氨氮对环境及后续生物处理过程造成了严重的影响。本文介绍了几种去除垃圾渗滤液氨氮的技术,并对这些技术进行了评估,分析了这些技术工程应用的特点,同时指出了垃圾渗滤液中氨氮去除技术工程应用的发展方向。  相似文献   

12.
垃圾填埋场渗滤液属于高浓度氨氮废水,其水量、水质特性变化大,成分复杂,因此较难处理。反渗透分离技术能有效截留垃圾渗滤液中溶解态的有机和无机污染物。采用三级反渗透处理垃圾渗滤液工艺处理后的出水水质,能够满足《生活垃圾填埋污染控制标准》(DB16889-2008)要求,并把渗滤液浓缩液回灌于填埋场。  相似文献   

13.
In this study, two pilot-scale aerobic landfill reactors with (A1) and without (A2) leachate recirculation are used to obtain detailed information on the quantity and quality of leachate in aerobic landfills. The observed parameters of leachate quality are pH, chloride (Cl), chemical oxygen demand (COD), biological oxygen demand (BOD), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), and nitrate (NO3-N). pH values of the leachate increased to 7 after 50 days in reactor A1 and after 70 days in reactor A2. Cl concentrations increased rapidly to 6100 (A1) and 6900 (A2) mg/L after 80 days, from initial values of 3000 and 2800 mg/L, respectively. COD and BOD values decreased rapidly in the A1 landfill reactor, indicating the rapid oxidation of organic matter. The BOD/COD ratio indicates that leachate recirculation slightly increases the degradation of solid waste in aerobic landfills. NH3-N concentrations decreased as a result of the nitrification process. Denitrification occurred in parts of the reactors as a result of intermittent aeration; this process causes a decrease in NO3 concentrations. There is a marked difference between the A1 and A2 reactors in terms of leachate quantity. Recirculated leachate made up 53.3% of the leachate generated from the A1 reactor during the experiment, while leachate quantity decreased by 47.3% with recirculation when compared with the aerobic dry landfill reactor.  相似文献   

14.
A laboratory study using a bench scale model of two units operation involving coagulation process with Moringa oleifera seeds extract as a coagulant and filtration process using hollow fibre microfiltration membrane, was adopted to treat Air Hitam Sanitary Landfill leachate in Puchong, Malaysia. The performance of the microfiltration membrane in pretreated sanitary landfill leachate treatment was investigated through a continuous process. The leachate sample was passed through conventional coagulation process before being filtered through a hollow fibre microfiltration membrane of 0.1 μm surface pores. The hollow fibre microfiltration membrane decreased the turbidity, colour, total suspended solids, total dissolved solids and volatile suspended solids in the leachate by 98.30, 90.30, 99.63, 14.71 and 20%, respectively. The results showed that microfiltration is capable of removing high percentage of solids from leachate and might be considered as a polishing stage after on-site biological treatment for sanitary landfill leachate.  相似文献   

15.
Biological treatment of landfill leachate usually results in low nutrient removals because of high chemical oxygen demand (COD), high ammonium-N content and the presence of toxic compounds such as heavy metals. Landfill leachate with high COD content was pre-treated by coagulation-flocculation with lime followed by air stripping of ammonia at pH=12. Nutrient removal from pre-treated leachate was carried out using a lab-scale sequencing batch reactor (SBR). Three different operations consisting of different numbers of steps were tested and their performances were compared. These operations were the three-step anaerobic (An)/anoxic (Ax)/oxic (Ox); the four-step (An/Ox/Ax/Ox), and the five-step (An/Ax/Ox/Ax/Ox) operations with total residence time of seven hours each. Experiments were carried out using three consecutive operations with a total cycle time of 21 h at a constant sludge age of 10 days. The lowest effluent nutrient levels were realized by using the five-step operation which resulted in effluent COD, NH4-N and PO4-P contents of 1,400, 107 and 65 mg l(-1), respectively, at the end of 21 h. Addition of domestic wastewater (1/1, v/v) and powdered activated carbon (PAC, 1 g l(-1)) to the pre-treated leachate improved nutrient removals in the five-step SBR operation, resulting in 75% COD, 44% NH4-N and 44% PO4-P removals after 21 hours of operation.  相似文献   

16.
A pre-denitrification activated sludge system (AS) without internal recycle was used in lab-scale studies of landfill leachate treatment. A bentonite supplement at a ratio of 1:4 (mineral : biomass) was used to ensure high sludge settling levels and to serve as a micro-organisms carrier. The system was operated within different parameters such as hydraulic retention time (HRT), ammonia loading rate (ALR) or external recycle ratio, which was adapted to treat varying leachate concentrations of COD and ammonia, ranging from 1020 to 2680 mgO(2)l(-1) and 400-890 mgNH(4)-Nl(-1) respectively. The nitrification was complete and ammonia oxidation reached 99%; this was obtained while the ALR did not exceed 0.09 g NH(4)(+)-Ng(-1)MLVSS d(-1) and HRT was not lower than 1 day (in the aeration reactor). The performance of denitrification was successfully improved by controlling the external recycle rate, when the BOD(5)/N ratio in the raw leachate was 4.1. Consequently, N-removal of up to 80% was achieved. A 10-fold decrease in the denitrification rate was obtained at a BOD(5)/N ratio of 0.5. The efficiency of COD removal varied significantly from 36% to 84%. The positive effect of bentonite addition was determined and is discussed based on preliminary studies. The experiments were carried out in fill-and-draw activated sludge with bentonite; the biomass ratio was 1:2. The activated sludge with bentonite was fed with a synthetic high ammonia and organic-free medium.  相似文献   

17.
Landfill leachate recirculation is efficient in reducing the leachate quantity handled by a leachate treatment plant. However, after land application of leachate, nitrification and denitrification of the ammoniacal N becomes possible and the greenhouse gas nitrous oxide (N2O) is produced. Lack of information on the effects of leachate recirculation on N2O production led to a field study being conducted in the Likang Landfill (Guangzhou, China) where leachate recirculation had been practiced for 8 yr. Monthly productions and fluxes of N2O from leachate and soil were studied from June to November 2000. Environmental and chemical factors regulating N2O production were also accessed. An impermeable top liner was not used at this site; municipal solid waste was simply covered by inert soil and compacted by bulldozers. A high N2O emission rate (113 mg m-2 h-1) was detected from a leachate pond purposely formed on topsoil within the landfill boundary after leachate irrigation. A high N2O level (1.09 micrograms L-1) was detected in a gas sample emitted from topsoil 1 m from the leachate pond. Nitrous oxide production from denitrification in leachate-contaminated soil was at least 20 times higher than that from nitrification based on laboratory incubation studies. The N2O levels emitted from leachate ponds were compared with figures reported for different ecosystems and showed that the results of the present study were 68.7 to 88.6 times higher. Leachate recirculation can be a cost-effective operation in reducing the volume of leachate to be treated in landfill. However, to reduce N2O flux, leachate should be applied to underground soil rather than being irrigated and allowed to flow on topsoil.  相似文献   

18.
渗滤液回灌在实际应用中应注意的问题   总被引:3,自引:0,他引:3  
李青松  金春姬  乔志香  向勇 《四川环境》2004,23(4):78-80,84
本文介绍了垃圾填埋场渗滤液回灌的机理、优缺点,“干填埋”与“湿填埋”之间的区别。渗滤液回灌可增加填埋废物的含水率,加快垃圾的降解速率,减少渗滤液的处理时间,提高填埋气中甲烷的含量,加速填埋场稳定化进程。鉴于以上这些优点,渗滤液回灌作为一种渗滤液处理方式将会有极大的应用前景。但在实际应用中回灌的渗滤液容易泄漏而导致地下水污染,这是影响渗滤液回灌广泛应用的主要原因。为了避免使地下水受污染,本文总结和分析了渗滤液回灌在实际应用中应注意的问题。  相似文献   

19.
In this study, regression analysis based an estimation model for biogas generated from an up-flow anaerobic sludge blanket (UASB) reactor treating landfill leachate is developed using several leachate parameters, such as pH, conductivity, total dissolved solids, chemical oxygen demand, alkalinity, chloride, total Kjeldahl nitrogen, ammonia, total phosphorus. These landfill leachate parameters are monitorized over a period of 1000 days at 35 ± 1°C in the UASB reactor. In order to develop the best model giving highest estimation performance, eight model equations including different input parameter combinations are analyzed. Based on the results of regression analysis, the best coefficients of the model equation are determined. As a conclusion, the developed model in this study can give accurate biogas amount prediction for the USAB reactor-based leachate treatment system.  相似文献   

20.
利用膜生物反应器研究垃圾填埋场垃圾渗滤运行环境,在常温环境下,运行结果表明:膜能够截留大量并使世代时间长的硝化菌在最短的时间富集成为优势菌种,对垃圾渗滤液中氨氮具有高效的去除效率;氨氮负荷0.082~0.109gN/gMLSS.d,CODC r负荷0.136~0.192g CODC r/gMLSS.d,DO 2.0~3.5mg/L,脱除氨氮的效果较好,去除率在95%~98%,CODC r去除率60%~70%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号