首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Age-0 walleye pollock (Theragra chalcogramma) caught in September in the Gulf of Alaska display habitat-associated differences in standard length (SL). Age-0 fish collected in the region around Sutwik Island and 375?km farther downstream near the Shumagin Islands most likely originate from the Shelikof Strait spawning aggregation. However, age-0 fish resulting from the same spawning aggregation differ in mean size up to 20?mm between areas by September. We examined the otoliths of the larval and age-0 stages of walleye pollock from these two areas in 2000 and 2001 to determine whether growth rate, hatch date, and/or temperature influenced fish size. Circulation models were used to determine whether transport of larvae from an upstream spawning group into the study areas could have occurred. Mean in situ temperature during sampling periods was not defined as a significant factor in altering growth rates. Overlapping hatch date distributions of the larval and age-0 fish in the Shumagin Island area confirmed that the fish were from the Shelikof Strait spawning group. Comparison of hatch date distributions in the upstream Sutwik Island area revealed larger/older larvae from an upstream spawning group mixed with larvae from the Shelikof Strait spawning group. Our results suggest that the offset of 20?mm SL between the groups of age-0 pollock was the result of a combination of enhanced survivorship of early-hatched larvae in the Sutwik area and the introduction and retention of the progeny of another spawning group originating upstream of Shelikof Strait.  相似文献   

2.
This study demonstrates that the timing of larval starvation did not only determine the larval quality (shell length, lipid content, and RNA:DNA ratio) and the juvenile performance (growth and filtration rates), but also determine how the latent effects of larval starvation were mediated in Crepidula onyx. The juveniles developed from larvae that had experienced starvation in the first two days of larval life had reduced growth and lower filtration rates than those developed from larvae that had not been starved. Lower filtration rates explained the observed latent effects of early larval starvation on reduced juvenile growth. Starvation late in larval life caused a reduction in shell length, lipid content, and RNA:DNA ratio of larvae at metamorphosis; juveniles developed from these larvae performed poorly in terms of growth in shell length and total organic carbon content because of “depletion of energy reserves” at metamorphosis. Results of this study indicate that even exposure to the same kind of larval stress (starvation) for the same period of time (2 days) can cause different juvenile responses through different mechanisms if larvae are exposed to the stress at different stages of the larval life.  相似文献   

3.
The pelagic crustacean Euphausia pacifica Hansen was sampled with a multiple-sample 1.0 m2 Tucker trawl and a multiple-sample 1.0 m2 vertical net in Dabob Bay, Washington on 17 dates between May 1985 and October 1987. Size (stage) structure and abundance of the population were determined for each date, while vertical distribution and diel migration were determined for 13 dates. Although internannual variability in both timing and magnitude of events occurred, consistent patterns were discernable. The population produced a large pulse of larvae (2 to 5 mm) in late spring of each year, apparently in response to the vernal phytoplankton bloom. Much lower abundances of larvae occurred during summer and autumn of each year, and larvae were completely absent during winter. Recruitment to the juvenile (6 to 9 mm) and adult (10 mm) stages was strongest during the summer, with abundances of these individuals peaking in summer and autumn. Individual growth rates, determined by modal progression analysis, were calculated for E. pacifica. Rates ranged from zero for some adult cohorts during the winter to 0.12 mm d-1 for larvae during spring. The latter are among the highest ever reported for this species in the field. The vertical distributions and diel vertical migrations (DVM) of E. pacifica varied seasonally and between size (stage) classes. At night, all size classes were distributed in the surface layer (upper 25 m) irrespective of season or year. During the day, the larger/older stages were always distributed at middepths (50 to 125 m). In contrast, the daytime distribution of the larvae was more variable, being concentrated at the surface during spring and early summer of 1985, and at increasing depths later in the summer and autumn of 1985 and again in spring of 1986. This resulted in invariant DVM in the juveniles and adults, but variable DVM in the larvae, the latter of which is hypothesized to be a response to variable abundances of zooplanktivorous fish.  相似文献   

4.
The significance of hatch date for the growth and survival of the sandeel,Ammodytes marinus, was investigated using otolith microstructure. Hatch dates of 2 to 6 mo-old juvenileA. marinus caught near Shetland were compared between 1990 and 1992, during which period year-class strength varied by more than an order of magnitude. The hatch-date distribution of juveniles in the 1992 year-class was compared with that estimated directly from the abundance of newly emerged larvae on the spawning grounds. The extent of larval hatching periods in 1990 and 1991 was also estimated from continuous plankton-recorder data. There were significant differences in hatching periods between all three years, hatching in 1990 and 1992 being markedly earlier than the long-term mean peak in hatching indicated from archival data. Most individuals from the 1991 year-class attained a larger size by July than those in other year-classes, despite hatching later. Variation in individual growth rates both within and between year-classes indicated that there was a seasonal cycle of growth opportunity in all years investigated. The study suggests that the degree of coupling between hatching and the onset of spring secondary production may be an important contributory factor to year-class variability in this species.  相似文献   

5.
Juvenile sardine, Sardina pilchardus Walbaum, 1792, were collected off Mallorca, Balearic Islands, during April–July 1989, and were aged by means of daily otolith increments. Growth rates were in the range of values reported for other clupeoids, although lower than those for larvae of the Mediterranean anchovy Engraulis encrasicolus. Hatching dates were back-calculated from the age in days and the date of capture. The data indicated that hatching was continuous, but revealed a low peak in the last half of November 1988 and a second, higher peak in the first half of March of the following year, in accordance with the general cycle of secondary production in this oligotrophic area.  相似文献   

6.
Growth trajectories of individual larvae of Japanese sardine, Sardinops melanostictus, caught in the coastal waters off western Japan were back-calculated from the first feeding stage up to date of capture (approximate size of 20 to 35 mm total length; TL) based on individually determined allometric relationships between otolith daily ring radii and fish total lengths. The larvae in January-, February-, and March-hatched cohorts in the coastal waters grew faster and more uniformly than those in the oceanic waters offshore of the Kuroshio current. Growth trajectories of the three hatch-month cohorts were similar and could be expressed by the Gompertz model. The inflection points of the growth curves were reached at 9 to 11 d after hatching, when larvae were 10.8 to 11.8 mm TL. Maximum growth rates at these points were 0.80 to 0.85 mm d−1. Growth rates gradually declined after the inflection points, and larval TLs converged into the infinite length of 29 to 32 mm, the sizes at which metamorphosis from larvae to juveniles is initiated. This asymptotic growth pattern in the larval stage resulted in the narrow ranges in TLs in spite of the wide range of ages of the larvae caught by boat seiners in the coastal waters. Slow growth and therefore long duration of the metamorphosing stage could be influential in determining the cumulative total mortality in the early life stages of the Japanese sardine. Received: 14 July 1996 / Accepted: 20 August 1996  相似文献   

7.
The great barracuda (Sphyraena barracuda) is a widespread, ecologically and socioeconomically important coastal fish, yet very little is known about its larvae. We examined spawning and larval ecology of Western Atlantic sphyraenids using monthly ichthyoplankton samples collected over 2 years along a transect spanning the east–west axis of the Straits of Florida (SOF). Samples were dominated by the great barracuda (92.8%) and sennets (Sphyraena borealis and Sphyraena picudilla; 6.6%). While larval sennets and S. barracuda displayed similar vertical distributions (majority in upper 25 m), horizontal and temporal patterns of abundance suggested a spatial and temporal species replacement between larval S. barracuda and sennets that tracks adult ecology. The diet of both taxa consisted largely of copepods, with inclusion of fish larvae at 8 mm SL, and in S. barracuda alone, a switch in the wet season to exclusive piscivory by 12 mm SL (18 days post-hatch). A lack of piscivory in S. barracuda larvae captured in the dry season corresponded to slower larval growth than in the wet season. Larval growth was also related to size-at-hatch and larval age such that larvae that were larger at hatch or larger (older) at capture grew faster at earlier ages, suggesting faster larval growth, and indirectly larger hatch size, conveys a survival advantage. Unlike larval growth, instantaneous mortality rate did not differ with season, and no lunar cyclic patterns in spawning output were identified. Our results provide insight into the pelagic phase of sphyraenids and highlight the importance of both diet and hatch size to the growth and survival of fish larvae in low latitude oceanic environments.  相似文献   

8.
We examined the daily deposition of otolith increments of marbled sole (Pseudopleuronectes yokohamae) larvae and juveniles by rearing experiments, and estimated the growth pattern of wild larvae and juveniles in Hakodate Bay (Hokkaido Island, Japan). At 16°C, prominent checks (inner checks; ca. 19.8 µm in diameter) were observed on the centers of sagittae and lapilli extracted from 5-day-old larvae. On both otoliths, distinctive and regular increments were observed outside of the inner checks, and the slopes of regression lines between age and the number of increments (ni) (for sagittae: ni=0.98×Day–5.90; for lapillus: ni=0.96×Day–5.70) did not significantly differ from 1. Inner check formations were delayed at lower temperature, and the inner checks formed 13 days after hatching at 8°C. Over 80% of larvae, just after their yolk-sac has been absorbed completely (stage C), had inner checks on both their otoliths. On the lapilli, other checks (outer check) formed at the beginning of eye migration (stage G). To validate the daily deposition of increments during the juvenile stage, wild captured P. yokohamae juveniles were immersed in alizarin complexone (ALC)-seawater solutions and reared in cages set in their natural habitat. After 6 days, the mean number of rings deposited after the ALC mark was 5.7. The age–body length relationship of wild P. yokohamae larvae and juveniles caught in Hakodate Bay was divided into three phases. In the larval period, the relationship was represented by a quadratic equation (notochord length=–0.010×Age2+0.682×Age–2.480, r2=0.82, P<0.001), and the estimated instantaneous growth was 0.38 mm day–1 at 15 days, 0 mm day–1 at 34 days and –0.12 mm day–1 at 40 days. The age–body length relationship in the early juvenile stage (<50 days) and the late juvenile stage (>50 days) were represented by linear equations (standard length=0.055×Age+5.722 and standard length=0.345×Age–9.908, respectively). These results showed that the growth rates in the late larval periods and the early juvenile stage were lower than those in the early larval stage and late juvenile stage; during the slow growth period, energy appears to be directed towards metamorphosis rather than body growth. This study provided the information needed to use otolith microstructure analysis for wild marbled sole larvae and juveniles.Communicated by T. Ikeda, Hakodate  相似文献   

9.
A. L. Moran 《Marine Biology》1997,128(1):107-114
An understanding of spawning and larval development can be fundamental to interpreting the abundance, distribution, and population structure of marine invertebrate taxa. Tegula funebralis (A. Adams, 1855), the black turban snail, has been the focus of numerous ecological studies on the Pacific coast of North America. To date, there are only conflicting and anecdotal reports of spawning, and there is no information on larval or juvenile development for this conspicuous and abundant species. On 19 September 1995, two individuals of T. funebralis were observed free-spawning gametes into seawater in tanks at the Oregon Institute of Marine Biology. Embryos and larvae were subsequently reared to metamorphosis and beyond. Development was pelagic and similar to development described for other trochids, and larvae were observed not to feed at any stage. Larvae began to metamorphose at 5.7 to 6.7 d and settled at 260 μm shell length. Juveniles grew ≃ 10 μm in shell length per day and appeared to feed on detritus. Juveniles lacked some adult diagnostic shell characters, including two columellar nodes and a closed umbilicus. In the field, small (<3 mm) juveniles occurred in the adult habitat on all sampling dates between October and March. Small juveniles were found only under rocks and were most abundant under rocks partially buried in coarse sand, suggesting that juveniles may utilize a specific microhabitat within the adult T. funebralis habitat. Received: 7 October 1996 / Accepted: 17 October 1996  相似文献   

10.
The plankton larval duration for 100 species of Pacific and Atlantic damselfishes was estimated from daily growth increments on the otolith of juvenile fish collected at various localities between July 1987 and September 1988. For newly-settled fishes, larval duration was determined by counting the entire number of increments present on the otolith, while for older juveniles estimates were made by counting the number of increments between the center of the otolith and a mark corresponding to settlement. We document the development of otolith formation during the period when eggs are incubated on the reef and show that daily increments are only accreted after larvae hatch and enter the planktonic phase. The planktonic larval duration for damselfish is shorter and less variable, both between and within species, compared to other groups of reef fishes such as wrasses and surgeonfishes. Larval duration ranged from 12 to 39 d. Average duration between species ranged from 13.1 to 35.2 d. The time spent in the plankton was not significantly correlated with geographic distribution when evaluated among species, however, genera with confined regional distribution have a shorter mean larval life than do widely distributed genera. Size at settlement was positively correlated with time spent in the plankton among species, but a significant correlation between these variables was only evident within one of ten species. The low variance in planktonic larval duration within species indicates that most damselfish are unable to delay metamorphosis following competency. This inability to postpone settlement limits the potential for dispersal, especially when dispersal time between suitable habitats is greater than about 30 d.  相似文献   

11.
Leptocephali of the widely distributed tropical marine eels of the genus Kaupichthys (family Chlopsidae) were collected around Sulawesi Island during a sampling survey in the Indonesian Seas in late September and early October 2002, and the otolith microstructure of 24 of the 59 specimens captured was examined to learn about the larval growth rates and spawning times of these small sized eels. Leptocephali ranging in size from 25 to 60 mm were collected in Makassar Strait and the Celebes Sea, but they were most abundant in the semi-enclosed Tomini Bay of northeast Sulawesi Island. The Kaupichthys leptocephali examined had 39–161 otolith growth increments. Their back-calculated hatching dates indicated that five age groups were present and each group appeared to have been spawned around the full moon of previous months. Average growth rate estimates of the first two age groups were 0.65 and 0.54 mm/day for the 27.4–30.4 and 37.6–45.6 mm age classes. The growth rates of the oldest three age groups (52.0–60.8 mm) appeared to have slowed down after they reached their approximate maximum size. An increase in increment widths at the outer margin of the otoliths of those larger than 53 mm suggested that the process of metamorphosis had begun even though there were few external morphological changes indicating metamorphosis. It is hypothesized that chlopsid leptocephali have an unusually short gut that may not need to move forward during early metamorphosis. The presence of four age classes in Tomini Bay suggests that the Togian Islands region may be productive habitats for Kaupichthys juveniles and adults.  相似文献   

12.
The growth history and recruitment dynamics of eel (Anguilla japonica) elvers were studied. Observations were based on growth increments in sagittal otoliths of elvers collected from Shuang-Chi River estuary off northeastern Taiwan, from November 1985 to February 1986. Total lengths of elvers upon arrival at the estuary were similar in most case; mean total lengths were from 55.99 to 59.06 mm. Daily ages of elvers at arrival ranged from 112.8±9.4 (±SD) to 156.5±13.5 d, indicating that migration of eel larvae from their oceanic spawning ground to the estuary requires 4 to 5 mo. Elver hatching dates, back-calculated from estimated daily ages, indicated that the spawning season lasted 5 mo (from late June to early October). Furthermore, the earlier eels spawned, the earlier elvers reached the estuary. The transition in growth history during the larval stage was obvious, as indicated from the change in increment width in elver otoliths. The inverse correlation between daily age and mean daily growth rates of fish length and otolith indicated that the age of elvers upon arrival at the estuary was susceptible to larval growth rate. In other words, the time taken on migration from oceanic spawning ground to the estuary was shorter for fast-growing larvae than for slowgrowing ones.  相似文献   

13.
Estimates were made of the predation rate upon eggs of walleye pollock (Theragra chalcogramma) in Shelikof Strait in the western Gulf of Alaska by midwater and near-bottom fish and invertebrate predators during April 1990. Adult and juvenile walleye pollock were the dominant (99% of total abundance) planktivores collected in midwater samples. Based on visual inspection of stomach contents, a high percentage of the sampled fish were found to have consumed pollock eggs. Daily egg consumption by older age groups of walleye pollock was estimated to be <1% of the eggs available at all sampling locations. The only other fishes found to consume pollock eggs were flatfishes collected in bottom trawls but their abundances and egg consumption were very low. Gammarid and hyperiid amphipods were important invertebrate predators on eggs in the water column, as determined by immunoassays using antibodies developed specifically to ascertain the presence of pollock egg-yolk protein. Decapod shrimp showed a high proportion of positive assays in near-bottom collections. Invertebrate predators may have consumed up to 4% of the total number of eggs available in the water column, but <1% of the total near the bottom on a daily basis. Although we were not able to account for the entire daily egg mortality estimated for this stock, our method of using a combination of techniques is promising in terms of future attempts at estimating total predation mortality.  相似文献   

14.
Otoliths have frequently been used to reconstruct growth histories in larval, juvenile and adult fish. However, there is growing evidence that otolith growth is directly determined by metabolic intensity and, consequently, only indirectly related to somatic growth. By performing measurements of oxygen consumption rate and other early life-history traits on individual eggs of zebrafish (Danio rerio), we found that oxygen consumption explained residual variance in otolith size that is not accounted for by egg size. Total oxygen consumption during the embryonic stage explained 34% of the variance in sagitta size at hatch, whereas larval size at hatch (as a proxy for growth during the embryonic period) was not significantly correlated with sagitta size. This strongly suggests that otolith growth is directly related to metabolic rate, and yields a mechanism that may explain recent observations of a link between otolith size at hatch and viability in larval fish.  相似文献   

15.
D. Margulies 《Marine Biology》1993,115(2):317-330
The nutritional condition of first-feeding and late larval/early juvenile scombrids was investigated in waters of the northwestern Panamá Bight from May through early November 1988. Wild-caught larvae and juveniles of three taxa, black skipjack tuna (Euthynnus lineatus), bullet and/or frigate tuna (Auxis spp.) and sierra (Scomberomorus sierra), were examined histologically to determine nutritional condition. The incidence of malnourishment in wild-caught preflexion (first feeding—prior to notochord flexion) larvae of all taxa was high. Starvation rates for E. lineatus and Auxis spp. preflexion larvae ranged from 62 to 63% d-1, while the percentage of larvae actually dying of starvation was estimated at 41 to 43% d-1. The nutritional point-of-no-return for preflexion larvae was estimated at 1 to 2 d maximum. The cellular condition of liver hepatocytes, particularly the relative amount of vacuolation related to storage of glycogen and lipid, proved to be a sensitive indicator of nutritional condition. In laboratory trials, late larval (postflexion) and early juvenile black skipjack exhibited a nutritional point-of-no-return of 2 to 3 d. Although postflexion larvae were moderately vulnerable to malnourishment in laboratory trials, <13% of wild-caught postflexion larvae exhibited even mild nutritional stress, and no postflexion larvae or juveniles showed signs of severe malnourishment. This pattern of starvation incidence suggests that tropical scombrids undergo stagespecific starvation mortality. Preflexion larvae can suffer significant daily losses due to starvation, while postflexion larvae and early juveniles seem to experience a rapid improvement in feeding ability and/or food availability.  相似文献   

16.
Anthropogenic CO2 emissions are acidifying the world’s oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here, we tested the impact of long-term (up to 16 months) and trans-life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1,200 μatm, compared to control 400 μatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5-fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning, while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2 had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles.  相似文献   

17.
Cell cycle analysis of muscle cell division rates offers a new and efficient technique to analyze growth of larval fish. Using this approach, growth of larval walleye pollock was estimated by determining cell proliferation rates, reasoning that growth during early life stages is probably attributed to increases in cell number rather than to increases in cell size. Characteristic patterns of brain and muscle cell division rates were produced in larval walleye pollock by manipulating their diet in the laboratory. The fraction of dividing muscle cells and, to a lesser extent, the fraction of dividing brain cells were direct indicators of fast and slow growth. A model was produced to estimate average growth rate from the fraction of dividing muscle cells. We developed a simple method for preparing and storing the muscle tissue that ensures nucleic acid stability for subsequent analyses and permits sampling in the field. We envision that the cell cycle methodology will have on-site applications, presenting an opportunity to attain real-time estimates of larval fish growth at sea. Determining the proportion of first-feeding larvae with a high fraction of dividing muscle cells may yield a means for predicting the proportion of fast-growing fish, i.e., the potential survivors.  相似文献   

18.
We provide experimental evidence for a direct link between embryonic metabolism and longevity in the larval stage of a marine fish when food resources are limited. Since growth rates of otoliths are closely related to metabolic rates, the area inside the hatch check (i.e., deposition of otolith matrix during embryonic development) is representative of inherent differences in metabolic rates. When exposed to food limitation, larvae with larger hatch check areas died earlier than larvae with smaller hatch check areas. This relationship did not occur in larvae that fed at saturated levels. A simple explanation for these observations is that larvae, which consumed metabolic fuel at higher rates died earlier unless energy derived from food was not limiting. Since high growth rates are linked to high metabolic rates, this mechanism could efficiently counteract selection for faster average growth but only when resources are limiting.  相似文献   

19.
Previous studies on various marine mollusc species have shown that both larval and juvenile growth rates are substantially heritable, but few workers have examined the extent to which larval and juvenile growth rates covary. We examined the relationship between larval and juvenile growth rates in seven laboratory experiments conducted between 1986 and 1993, using the prosobranch gastropods Crepidula plana Say and C. fornicata (L.). In most experiments larvae were reared individually, measured twice nondestructively to determine larval grwoth rate, allowed or stimulated (daily 5-h exposure to 20 mM excess K+ in seawater) to metamophose, and then measured at least twice after metamorphosis to determine juvenile growth rates. Generally, there was no significant (p >0.10) relationship between larval and juvenile growth rates, suggesting that in these two species selection can act independently on the two stages of development. A positive correlation (p=0.007) between larval and juvenile growth rates was observed for C. fornicata in one experiment, but only for offspring from females maturing the most rapidly in laboratory culture. Even for these larvae, however, variation in larval growth rate explained<2% of the variation in juvenile growth rate, so that larval and juvenile growth rates are at most only weakly associated in this species.  相似文献   

20.
G. W. Allison 《Marine Biology》1994,118(2):255-261
Patchy food distribution may force temporary starvation conditions on planktonic larvae. This potential food limitation may affect survivorship, duration of larval period, and post-metamorphic succes. In this study, larvae of the asteroid Asterina miniata were subjected to temporary food deprivation of several durations and at different stages. Developmental effects were documented by quantification of larval stage, total length, time to metamorphosis, initial juvenile radius, range of settling times, and percent survival to metamorphosis. All starved treatments were significantly affected in settling time and most in percent survival. However, larvae starved later in development demonstrated tremendous tolerance of food deprivation (e.g. the total number of settlers in the treatment starved for 28 d was not significantly different from the fed control). Survival was lower in treatments starved earlier in development than those starved later. Food is apparently required until late in larval development to facilitate metamorphosis. The range of settling times was large; for example, the continuously-fed control treatment produced juveniles from Days 58 through 136. Temporary starvation had no effect on initial juvenile radius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号