首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.  相似文献   

2.
With its potential for low (if any) disinfection byproduct formation and easy retrofit for chlorine contactors, peracetic acid (PAA) or use of PAA in combination with other disinfectant technologies may be an attractive alternative to chlorine-based disinfection. Examples of systems that might benefit from use of PAA are water reuse schemes or plants discharging to sensitive receiving water bodies. Though PAA is in use in numerous wastewater treatment plants in Europe, its chemical kinetics, microbial inactivation rates, and mode of action against microorganisms are not thoroughly understood. This paper presents results from experimental studies of PAA demand, PAA decay, and microbial inactivation, with a complementary modeling analysis. Model results are used to evaluate techniques for measurement of PAA concentration and to develop hypotheses regarding the mode of action of PAA in bacterial inactivation. Kinetic and microbial inactivation rate data were collected for typical wastewaters and may be useful for engineers in evaluating whether to convert from chlorine to PAA disinfection.  相似文献   

3.
Photoreactivation of microorganisms following UV inactivation is a well-known, but complex, phenomenon. It is affected by several factors, including UV fluence, wavelength, light intensity, and exposure time to photoreactivating light. The effect on photoreactivation of a combined peracetic acid (PAA)/UV process has not been investigated. Accordingly, this study compared the degree of photoreactivation, under both sunlight and artificial lights, following UV and combined PAA/UV inactivation of fecal coliforms. Effluent samples from the Montreal Wastewater Treatment Plant (MWTP) (Quebec, Canada) were exposed, for 3 hours, to both low- and high-intensity artificial lights and sunlight. All resulted in similar photoreactivation levels. However, average photoreactivation for UV-treated wastewater samples was 1.2 logs, compared with 0.1 log for the combined PAA/UV treatment. Hence, the use of PAA in combination with UV can significantly reduce the potential for photoreactivation. To simulate the photoreactivation conditions of the MWTP effluent (which passes through a 4-km outfall tunnel with approximately 3 hours detention time), UV-treated samples were kept in the dark for 3 hours before photoreactivating light exposure. After this period, photoreactivation levels were close to zero. Hence, the effects of photoreactivation may be diminished by use of a combined disinfection scheme and/or by delaying exposure of the disinfected wastewater to light.  相似文献   

4.
5.
Sulfaquinoxaline (SQX) is an antimicrobial of the sulfonamide class, frequently detected at low levels in drinking and surface water as organic micropollutant. The main goal of the present study is the evaluation of SQX reactivity during chlorination and UV irradiations which are two processes mainly used in water treatment plants. The SQX transformation by chlorination and UV lights (254 nm) was investigated in purified water at common conditions used for water disinfection (pH =?7.2, temperature =?25 °C, [chlorine] =?3 mg L?1). The result shows a slow degradation of SQX during photolysis compared with chlorination process. Kinetic studies that fitted a fluence-based first-order kinetic model were used to determine the kinetic constants of SQX degradation; they were equal to 0.7?×?10?4 and 0.7?×?10?2 s?1corresponding to the half time lives of 162 and 1.64 min during photolysis and chlorination, respectively. In the second step, seven by-products were generated during a chlorination and photo-transformation of SQX and identified using liquid chromatography with electrospray ionization and tandem mass spectrometry (MS-MS). SO2 extrusion and direct decomposition were the common degradation pathway during photolysis and chlorination. Hydroxylation and isomerization were observed during photodegradation only while electrophilic substitution was observed during chlorination process.  相似文献   

6.
Buth JM  Ross MR  McNeill K  Arnold WA 《Chemosphere》2011,84(9):1238-1243
Triclosan, a common antimicrobial agent, may react during the disinfection of wastewater with free chlorine to form three chlorinated triclosan derivatives (CTDs). This is of concern because the CTDs may be photochemically transformed to tri- and tetra-chlorinated dibenzo-p-dioxins when discharged into natural waters. In this study, wastewater influent, secondary (pre-disinfection) effluent, and final (post-disinfection) effluent samples were collected on two occasions each from two activated sludge wastewater treatment plants, one using chlorine disinfection and one using UV disinfection. Concentrations of triclosan and three CTDs were determined using ultra performance liquid chromatography-triple quadrupole mass spectrometry with isotope dilution methodology. Triclosan and the CTDs were detected in every influent sample at levels ranging from 453 to 4530 and 2 to 98 ng L−1, respectively, though both were efficiently removed from the liquid phase during activated sludge treatment. Triclosan concentrations in the pre-disinfection effluent ranged from 36 to 212 ng L−1, while CTD concentrations were below the limit of quantification (1 ng L−1) for most samples. In the treatment plant that used chlorine disinfection, triclosan concentrations decreased while CTDs were formed during chlorination, as evidenced by CTD levels as high as 22 ng L−1 in the final effluent. No CTDs were detected in the final effluent of the treatment plant that used UV disinfection. The total CTD concentration in the final effluent of the chlorinating treatment plant reached nearly one third of the triclosan concentration, demonstrating that the chlorine disinfection step played a substantial role in the fate of triclosan in this system.  相似文献   

7.
Mycobacteria naturally aggregate in water, a characteristic that may serve to protect them against disinfection in wastewater. Secondary effluent was spiked with Mycobacterium terrae (M. terrae), sequentially filtered through 100-, 41-, and 20-microm nylon filters to partition aggregate sizes, confirmed using particle-size analysis and microscopy. Each sample was exposed to doses of UV light (10 to 60 mJ/cm2 at 254 nm) and free chlorine (27 to 150 mg-min/L at 4 degrees C). Inactivation of M. terrae in wastewater was initially rapid, with 2.5 log reduction at 14 mJ/cm2 and 56 mg-min/L for UV and free chlorine, respectively. However, in effluent and 100-microm filtered wastewater, spiked M. terrae was present to the highest doses evaluated. Interestingly, M. terrae passed through 41- and 20-microm filters were inactivated rapidly, with no survivors after moderate disinfection doses. Inactivation of Mycobacteria in wastewater may be compromised by aggregates larger than 41 microns.  相似文献   

8.
以粪肠球菌为研究对象,研究了自由氯、一氯胺和二氧化氯在不同pH值和温度下的消毒效果,并将灭活速率常数表示为pH和温度的函数,对Chick—Watson模型进行了修正。结果表明,随着pH的上升,自由氯和一氯胺的灭活率减小,二氧化氯的灭活率则增大。温度对一氯胺的影响较小,对自由氯和二氧化氯的影响较显著。修正后含有pH和温度两参数的消毒动力学模型可以很好地模拟消毒过程,增强了模型的通用性。  相似文献   

9.
为保持集雨窖水水质,提高饮用水安全性,采用向窖水中投加三氯异氰尿酸(trichloroisocyanuric acid,TCCA)的消毒方法,检测主体水的余氯衰减规律和微生物的变化情况,重点研究了消毒剂投加量、温度及pH等因素的影响。实验结果表明:余氯衰减过程符合一级动力学模型;随初始氯投加量的增大,水中余氯衰减量增大,余氯衰减系数减小且与初始投加量的倒数成线性正相关;随水中有机物等反应物浓度的降低,余氯衰减量减少,余氯衰减系数减小;随温度的升高,余氯衰减量增大,衰减系数增大;随pH的增大,余氯衰减量减少,衰减系数减小;水中菌落总数的灭活率随消毒剂投加量的增加而增大。当消毒剂浓度为1.5~2.5 mg·L−1时,在60 min内可完成对菌落总数99.0%的灭活;当消毒剂浓度大于2.5 mg·L−1时,在30 min内可完成对菌落总数99.9%的灭活。在pH为6~9时,pH越小,消毒效果越好;在10~30 ℃时,温度越高,消毒效果越好;水中氨氮存在时,氯胺的生成会减弱短期消毒效果。与传统氯制消毒剂相比,TCCA在窖水消毒方面有较好的应用前景。  相似文献   

10.
Triclocarban (TCC) is an antibacterial agent found in pharmaceuticals and personal care products (PPCP). It is potentially bioaccumulative and an endocrine disruptor, being classified as a contaminant of emerging concern (CEC). In normal uses, approximately 96% of the used TCC can be washed down the drain going into the sewer system and eventually enter in the aquatic environment. UV photolysis can be used to photodegrade TCC and ecotoxicity assays could indicate the photodegradation efficiency, since the enormous structural diversity of photoproducts and their low concentrations do not always allow to identify and quantify them. In this work, the TCC was efficiently degraded by UVC direct photolysis and the ecotoxicity of the UV-treated mixtures was investigated. Bioassays indicates that Daphnia similis (48 h EC50 = 0.044 μM) was more sensitive to TCC than Pseudokirchneriella subcapitata (72 h IC50 = 1.01 μM). TCC and its photoproducts caused significant effects on Eisenia andrei biochemical responses (catalase and glutathione-S-transferase); 48 h was a critical exposure time, since GST reached the highest activity values. UVC reduced the TCC toxic effect after 120 min. Furthermore, TCC was photodegraded in domestic wastewater which was simultaneously disinfected for total coliform bacterial (TCB) (360 min) and Escherichia coli (60 min).
Graphical abstract TCC degradation and ecotoxicological assessment
  相似文献   

11.
The fouling of quartz sleeves surrounding UV disinfection lamps is a perennial problem affecting both drinking water and wastewater applications. The mechanisms of fouling are not fully understood, but factors promoting fouling are believed to include heat, high hardness and/or high iron concentrations, and hydrodynamic forces. The role of UV radiation itself is unclear. The goal of this paper is to attempt to isolate the fouling mechanisms and to provide key information about those induced by UV radiation, using a unique laboratory-scale continuous-flow UV reactor. Its design allowed for irradiated and nonirradiated zones and control of both temperature and UV intensity at the fouling surface. Synthetic wastewater samples were tested with two levels of calcium, iron, phosphorus, and biochemical oxygen demand (as beef broth), and constant levels of magnesium and nitrogen to assess the effects of the four key variables. Average UV fluence before fouling exceeded 35 mJ/cm2, based on collimated beam tests. Foulant accumulation was monitored by UV intensity measurements and by mass and composition of foulant collected after an average of 56 hours of continuous operation. Tests showed that relative UV intensity dropped by as much as 100% when iron was present. Detailed results were assessed and yielded support for the following three UV-induced fouling mechanisms: (a) precipitation of ferric hydroxide [Fe(OH)3], (b) release of calcium from calcium-organics complexes followed by precipitation of iron-organics complexes, and (c) calcium carbonate precipitation. Other fouling mechanisms, such as sedimentation of preformed particles and sorption of calcium onto preformed colloids of Fe(OH)3, occurred outside the zone of UV radiation. Hence, these could be confused with concurrent UV-induced mechanisms in full-scale reactors. Iron and/or calcium undoubtedly created the most favorable conditions for fouling to occur; in the absence of both, fouling would be unlikely. The rates of fouling were enhanced when organics were also present; however, when phosphorus was present, fouling in the UV section was reduced. Indeed, UV may be viewed as inhibiting the fouling caused by phosphate complexes.  相似文献   

12.
Elia AC  Anastasi V  Dörr AJ 《Chemosphere》2006,64(10):1633-1641
This study was carried out in order to assess the effects of disinfectant-treatment on antioxidant response of Cyprinus carpio L. Therefore, enzymatic activities of glutathione S-transferases, glyoxalase I, glyoxalase II, glutathione peroxidases, glutathione reductase, catalase and total glutathione content of carp liver, exposed to surface water treated with three disinfectants for potabilization, sodium hypochlorite, chlorine dioxide and peracetic acid were investigated. Specimens of carp were exposed in four experimental tanks supplied with a continuous water flow from Lake Trasimeno (Italy), three of them treated with constant concentration of sodium hypochlorite, chlorine dioxide and peracetic acid, for 10 and 20 days, while the control tank was supplied with untreated lake water. Differences in biochemical parameters were observed in specimens following exposure to these disinfectants and mainly, chlorine compounds induced marked biochemical variations of carp liver, compared to those induced by peracetic acid treatment. Our results showed that antioxidant parameters of Cyprinus carpio could be used as biomarkers of oxidative stress when this species is exposed to disinfectants for water potabilization.  相似文献   

13.
The decomposition of 2-nitrophenol in aqueous solutions by ozone and UV/ozone processes was found to be technically feasible under adequate experimental conditions. Formation of nitrate ions was observed following the decomposition of 2-nitrophenol by ozone and UV/ ozone processes. Increasing ozone dosage and UV light intensity accelerated the decomposition rate of 2-nitrophenol in an aqueous solution. The species distribution of 2-nitrophenol under various solution conditions plays a significant role in determining decomposition behavior. In most experiments conducted in this study, the decomposition of 2-nitrophenol by ozone and UV/ozone processes was favored to occur in alkaline conditions. The addition of 2-butanol accelerated the rate of gaseous ozone transfer to an aqueous phase by reducing the surface tension of aqueous solution and therefore enhancing the decomposition rate of 2-nitrophenol by ozone and UV/ozone processes.  相似文献   

14.
基于拉格朗日方法建立了耦合流体流动、紫外光强辐射与粒子辐射剂量的数值计算模型.利用该模型对工业尺寸的紫外消毒设备进行了模拟计算,获得了消毒设备内的场量信息;展示了利用CFD模拟优化设计紫外消毒反应器的方法;讨论了设置挡板和改变灯管布置2种方式对粒子辐射剂量的影响,计算结果表明,调整辐射场对紫外消毒设备性能的改善程度明显高于改变流动状态.  相似文献   

15.
Chang CY  Hsieh YH  Shih IC  Hsu SS  Wang KH 《Chemosphere》2000,41(8):1181-1186
In this study, chlorine dioxide (ClO2) was used as an alternative disinfectant with vanillic acid, p-hydroxybenzoic acid, and humic acid as the organic precursors in a natural aquatic environment. The primary disinfection by-products (DBPs) formed were trihalomethanes (THMs) and haloacetic acids (HAAs). Under neutral conditions (pH = 7) for vanillic acid, more total haloacetic acids (THAAs) than total trihalomethanes (TTHMs) were found, with a substantial increase during the later stages of the reaction. In the case of p-hydroxybenzoic acid, the amount of THAAs produced was minimal. Raising the concentration of ClO2 was not favorable for the control of THAAs in low concentrations of vanillic acid. ClO2 could reduce the total amount of TTHMs and THAAs for higher concentration of vanillic acid. It was found that the humic acid treatment dosage was not significant. Under alkaline conditions (pH = 9), the control of TTHMs and THAAs for the treatment of vanillic acid was better and more economical, however, an appreciable amount of inorganic by-products were observed. Under the same alkaline condition, the control of THAA for the treatment of p-hydroxybenzoic acid was not beneficial and for the treatment of humic acid was not significant.  相似文献   

16.
The paper summarizes the results of a bench-scale study to evaluate the feasibility of using peracetic acid (PAA) as a substitute for sodium hypochlorite both for discharge into surface water and for agricultural reuse. Trials were carried out with increasing doses (1, 2, 3, 5, 10, and 15 mg/L) and contact times (6, 12, 18, 36, 42, and 54 minutes) to study disinfectant decay and bacterial removal and regrowth, using fecal coliform and Escherichia coli (E. coli) as process efficiency indicators. Peracetic acid decay kinetics was evaluated in tap water and wastewater; in both cases, PAA decays according to first-order kinetics with respect to time, and a correlation was found between PAA oxidative initial consumption and wastewater characteristics. The PAA disinfection efficiency was correlated with operating parameters (active concentration and contact time), testing different kinetic models. Two data groups displaying a different behavior on the basis of initial active concentration ranges (1 to 2 mg/L and 5 to 15 mg/L, respectively) can be outlined. Both groups had a "tailing-off" inactivation curve with respect to time, but the second one showed a greater inactivation rate. Moreover, the effect of contact time was greater at the lower doses. Hom's model, used separately for the two data groups, was found to best fit experimental data, and the disinfectant active concentration appears to be the main factor affecting log-survival ratios. Moreover, the S-model better explains the initial resistance of E. coli, especially at low active concentrations (< 2 mg/L) and short contact times (< 12 minutes). Microbial counts, performed by both traditional methods and flow cytometry, immediately and 5 hours after sample collection (both with or without residual PAA inactivation), showed that no appreciable regrowth took place after 5 hours, neither for coliform group bacteria, nor for total heterotrophic bacteria.  相似文献   

17.
以地下水源水中真菌为研究对象,研究了单独氯灭活、单独臭氧灭活以及臭氧-氯顺序灭活的灭菌效果,并用Berenbaum公式判断了2种消毒剂联合作用的性质,同时考察了预臭氧浓度和预臭氧时间对灭活效果的影响。结果表明:单独氯灭活时,当Ct=40 min·mg·L-1时,真菌存活率仅为7%;单独臭氧灭活时,当Ct=9 min·mg·L-1时,真菌存活率仅为10%;与单独消毒剂灭活相比,臭氧-氯顺序灭活对真菌的灭活效果更明显,1.0 mg·L-1臭氧作用1 min后接2.0 mg·L-1氯作用5 min,真菌存活率仅为11.7%;用Berenbaum公式计算得出臭氧和氯顺序灭活真菌是一种协同作用,且随着预臭氧浓度的增大、预臭氧时间的延长,灭活效果越好,协同作用越强。  相似文献   

18.
Wastewaters of private household septic tanks and cesspools have been treated with peracetic acid (1-2 g L(-1)). Adding 1 g L(-1) peracetic acid to wastewaters was easy and has been found to be effective in destroying enteric indicator microorganisms. The careful mixing of peracetic acid and wastewater was found to be important. Winter periods with frozen soil, ice and snow did not constitute extra problems. The bad smell of these wastewaters almost totally disappeared during the treatment. When wastewaters treated with peracetic acid were emptied into animal slurry tanks, hygienization still continued in the mixture of animal slurry and the wastewaters. These wastewaters could thus be released into agricultural soil without risk of microbiological pollution to groundwaters.  相似文献   

19.
赵建超  黄廷林  文刚  任崴  朱红 《环境工程学报》2016,10(12):6867-6872
以地下水源水中真菌为研究对象,研究了单独紫外线灭活、单独氯灭活以及紫外线-氯顺序灭活的灭菌效果,同时对单独消毒剂灭活进行了动力学研究,确定了其动力学参数。结果表明:单独紫外线灭活时,在相同紫外剂量(I·t)下,高紫外强度(I)下真菌的灭活效果优于低紫外强度的灭活效果;紫外线灭活符合一级光化学反应,其速率常数k为0.044~0.077 cm2·(mW·s)-1。单独氯灭活时,氯浓度2.0 mg·L-1,作用30 min,真菌灭活率达到95%;氯衰减符合一级衰减模型,即氯灭活真菌符合一级动力学反应,其速率常数k为0.056~0.081 L·(mg·s)-1。紫外线-氯顺序灭活时,高紫外剂量-低加氯量可以达到低紫外剂量-高加氯量的灭活效果;真菌完全灭活时,紫外剂量从5 mJ·cm-2增加到30 mJ·cm-2,加氯量可降低1~2 mg·L-1,减少了消毒副产物的生成量,降低了生态环境风险;紫外线与氯顺序灭活具有协同效应。  相似文献   

20.
Environmental Science and Pollution Research - Sulfate radical (?SO4?)–based advanced oxidation processes have attracted a great deal of attention for use in water disinfection...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号