首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为研究蒲河中致嗅类VOSCs(挥发性有机硫化物)的污染水平、空间分布及其影响因素,采用吹扫捕集(P&T)与气相色谱(GC)/火焰光度检测器(FPD)联用方法,测定水样中14种致嗅类VOSCs的质量浓度,采用相关性分析确定水质因子〔ρ(DO)、ρ(NH3-N)、ρ(CODCr)、ρ(BOD5)〕对ρ(∑VOSCs)空间分布的影响. 结果表明:所调查的27个采样点中各目标化合物均有检出,ρ(∑VOSCs)的范围为85.82~1 766.04 ng/L;DMS(甲硫醚)为最主要的污染物,ρ(DMS)平均值为114.29 ng/L,检出率为96.30%,变异系数为0.42. ρ(DO)与ρ(∑VOSCs)显著相关,Pearson相关系数为-0.751,对ρ(∑VOSCs)的空间分布影响最大;其次是ρ(NH3-N),Pearson相关系数为0.441;ρ(CODCr)和ρ(BOD5)与ρ(∑VOSCs)不相关.   相似文献   

2.
为研究厦门近岸海域挥发性有机硫化物(volatile organic sulfur compounds,VOSCs)的季节性变化特征,于2013年采集了厦门近海域4个季节典型时段的大气样品,并利用三段预浓缩和GC-MS联用技术的方法对挥发性有机硫化物的浓度进行了测定。研究结果表明:大气中VOSCs浓度季节变化显著,其中冬季最高(2 643.04 ng/m3),而夏季最低(829.08 ng/m3),主要受到夏季风速高和台风雨的吸收和稀释作用影响。对比不同采样点各种硫化物组分可知,羰基硫(COS)是厦门近海域大气中有机硫化物的最主要组分,浓度范围在757.14~1 373.50 ng/m3,占总VOSCs的58.1%~75.8%。二甲基硫(DMS)和二甲基二硫醚(C2H6S2)在会展中心采样点的浓度最高,分别为143.54 ng/m3(秋季)和406.10 ng/m3(冬季);甲硫醇(CH4S)和乙硫醚(C4H10S)在珍珠湾采样点的浓度最高,分别为439.14 ng/m3(冬季)和411.61 ng/m3(春季)。厦门近岸海域各站位点有机硫化物组分的浓度变化主要受到季节性差异、人为因素和气象因素等的影响。  相似文献   

3.
于2017年3~4月首次对东海表层海水及大气中3种主要挥发性有机硫化物(VSCs)即羰基硫(COS)、二甲基硫(DMS)、二硫化碳(CS2)的浓度分布进行观测,研究了海水中3种主要VSCs的相关性,并估算了3种VSCs的海-气通量.结果表明,东海表层海水COS、DMS和CS2的浓度平均值分别为(1.0±0.4)、(6.8±6.8)和(0.6±0.4)nmol/L,总体来看东海表层水中3种VSCs呈现出近岸高、远海低的分布趋势.相关性分析表明DMS与Chl-a存在显著相关性,表明浮游植物生物量是影响东海海水中DMS分布的主要因素;同时DMS与CS2存在着显著的相关性,表明这2种物质的来源有着一定的共性.大气中COS、DMS和CS2的浓度平均值分别为:(294.7±158.8)、(22.7±18.0)和(108.8±88.1)×10-12,分布呈现出近岸高,远海低的趋势,主要受到人为活动等陆源输入的影响.此外春季东海COS、DMS和CS2的海-气通量平均值分别为(4.0±3.4)、(25.8±33.8)和(2.6±2.9)μmol/(m2⋅d),表明春季东海是大气中3种VSCs重要的源.  相似文献   

4.
王艳君  郑晓玲  何鹰  张栋  王保栋 《环境科学》2011,32(12):3617-3622
建立了一种捕集、解析、氧化、紫外荧光检测技术,用于大气中痕量总挥发性有机硫化物的检测.自行研制的低温捕集-热解析装置综合了固体阻留法和低温冷凝法的优点,应用于大气中痕量挥发性有机硫化物的富集,富集的有机硫化物在高温和助燃气作用下,充分氧化为二氧化硫,采用紫外荧光法检测二氧化硫含量,从而间接获得大气中总挥发性有机硫化物的浓度值.方法的捕集温度5℃,解析温度150℃,氧化温度1 000℃,精密度5.46%,回收率为99.6%~109.2%.利用该装置测定了2011年2~4月青岛大气中痕量总挥发性有机硫化物的含量为42~195 ng·m-3.  相似文献   

5.
室内环境中的污染物主要来源于建筑装饰材科、家具、家用电器等生活用品与生活消费品以及人类活动所产生的各种无机化合物和有机化合物,其中挥发性有机污染物(TVOC)严重地影响人体健康。本在分析了TVOC的来源及其对室内空气品质的影响的基础上,提出了相应的污染控制对策。在污染控制策略上,应首先从源头加以控制,同时保证室内环境有很好的通风能力,通过选用环保建筑装饰材科、“烘烤”加速污染物散发和通风换气、进行空气净化等措施来降低污染物浓度,以提高室内空气品质。  相似文献   

6.
建立了一种捕集、解析、氧化、紫外荧光检测技术,用于水中痕量总挥发性有机硫化物的检测.自行研制的低温捕集-热解析装置实现水中痕量挥发性有机硫化物的富集,富集的有机硫化物在高温和助燃气作用下,充分氧化为二氧化硫,采用紫外荧光法检测二氧化硫含量,从而间接获得水中总挥发性有机硫化物的浓度值.方法的捕集温度5℃,解析温度150℃,氧化温度1000℃,气提室温度65℃,气提时间20min,精密度5.5%,检测限为6ng/L,加标回收率为91.6%~95.1%.利用该装置对青岛市某池塘水样进行检测分析,检测结果中总挥发性有机硫化物的含量为1503~1911ng/L.  相似文献   

7.
介绍采用气相色谱法建立环境空气中挥发性有机硫化物分析及采样时遇到的问题,着重讨论了有机硫化物的采样方法的选择,回顾了对石化行业挥发性有机硫化物样品采集取得经验,并展望今后采集有机硫的前景,并提出了建议。  相似文献   

8.
该文分析了长寿区环境空气中臭氧污染的特征,探讨了气温、湿度、风速等气象条件对环境空气中臭氧浓度的影响,通过绘制EKMA曲线指出臭氧生成的主导因素。文章设置4个挥发性有机物(VOCs)监测点分析了长寿区环境空气中的VOCs含量,结果表明:含氧挥发性有机物以及芳香烃类是长寿区挥发性有机物中的主要成分,分别占总和的32.28%和25.52%,其中芳香烃对臭氧生成的贡献最大。结合PMF模型对VOCs以及臭氧进行了源解析研究,结果表明:工业排放和交通排放是长寿区环境空气中VOCs的主要来源,分别占据VOCs排放总量的56%和18%,对臭氧生成的贡献率分别为46%和25%,在此基础上提出了臭氧污染防治措施。  相似文献   

9.
使用热扩散管与长飞行时间气溶胶质谱联用系统对2020年深圳市秋季亚微米级气溶胶进行在线测量,获取和分析了气溶胶的化学组成及挥发性特征,并利用正矩阵因子分析法(PMF)对有机气溶胶进行了来源解析.结果显示:观测期间,气溶胶平均质量浓度为(28.3±11.1)μg/m3(9.5~76.8μg/m3),其中,有机物占比最高,为57.9%,其次为硫酸盐(24.7%).PMF对有机气溶胶解析结果得到四类源,分别为烃类有机气溶胶(HOA)、餐饮源有关的有机气溶胶(COA)、低氧化性的氧化有机气溶胶(LO-OOA)和高氧化性的氧化有机气溶胶(MO-OOA).HOA、COA、LO-OOA和MO-OOA平均分别占到总有机物的9.1%、27.2%、31.8%和31.9%.进一步采用NO+/NO2+比值法和PMF方法估算有机硝酸酯(ON)浓度,两种方法估算结果相关性良好,ON的平均浓度为0.17~0.25μg/m3,占总有机气溶胶质量的1.5%~9.7%,说明其对深圳大气气溶胶贡献显著.ON与各有机气溶胶因子的相关性比对发现,其与LO-OOA相关性最高(R=0.80),说明其可能来源于新鲜的二次生成反应.挥发性研究结果得出,深圳市气溶胶主要化学组分挥发性顺序为氯盐≈无机硝酸盐 > 铵盐 > 有机物 > 有机硝酸酯 > 硫酸盐,对于有机气溶胶因子,其挥发性排序为LO-OOA > HOA > COA > MO-OOA,除了LO-OOA,其余因子挥发性与其氧化态排序一致,而LO-OOA从50~70℃组分下降最多,说明其所含组分挥发性差异最为明显.  相似文献   

10.
利用三维荧光光谱法和Pearson相关性分析,研究了典型东北城镇型河流——白塔堡河水体溶解性有机物(DOM)的污染特征,并解析了其来源。结果表明:白塔堡河水体DOM的荧光峰类型主要有紫外区类富里酸峰(A峰)、可见区类富里酸峰(C峰)、类蛋白峰(B峰)和类蛋白峰(T峰);水体DOM主要组分及其浓度顺序为蛋白类物质>溶解性微生物代谢产物>富里酸类物质>腐殖酸类物质,水体DOM浓度空间分布表现为中下游>上游;水体DOM来源表现为内源和外源的双重特性,其中内源污染不容忽视;水体DOM各组分浓度与氨氮(NH3-N)和总磷(TP)浓度呈显著正相关,与溶解氧(DO)浓度呈负相关。  相似文献   

11.
天津滨海新区工业源VOCs及恶臭物质排放特征   总被引:9,自引:2,他引:9       下载免费PDF全文
参考USEPA TO-14A/15方法,选择天津市滨海新区内的6个不同类型的工业源,包括制药、自行车制造、炼油、石化、树脂合成和橡胶,对各类源工艺流程中有组织排放源排放的挥发性有机物(VOCs)进行定量分析,得到了源成分谱;并将各类源排放的恶臭物质浓度与嗅觉阈值进行对比,对其引发恶臭污染的潜在能力做出评价.结果显示,上述各类排放源的生产工艺中的VOCs总浓度分别为16.8,115.3,204.6,225.3,10.9,191.7mg/m3. 根据源成分谱分析结果,制药源和自行车喷漆车间的排气中甲苯比例分别为79.1%和94%;石化企业源中总二甲苯比例超过60%;橡胶企业脱硫工序,排放以硫化物为主;树脂合成工业,主要原料苯乙烯在排气中检出比例达51.8%;炼油源排气成分复杂,以卤代烃和硫化物为主.同时各类工业源均存在一定的恶臭污染,橡胶、炼油源的硫化物污染,树脂合成工业源的苯乙烯污染,石油化工源的混合污染,都应引起足够的重视.  相似文献   

12.
为明晰克鲁伦河流域地下水饮用水水源中挥发性有机物(volatile organic compounds,VOCs)的污染特征和风险水平,采用吹扫捕集气相色谱质谱联用仪对2020年8月在克鲁伦河流域采集的12个水样(7个地表水、5个地下水)进行分析,并采用美国国家环境保护局(US EPA)推荐的健康风险和生态风险评价模型对VOCs风险进行评价。结果表明:研究区域水体中VOCs污染程度较低,总体呈现地下水略高于地表水的状况;12个采样点均有VOCs检出,其中1,1-二氯乙烷、2,2-二氯丙烷、1,2-二氯丙烷、1,3-二氯丙烷、1,1-二氯乙烯检出率为100%;检出的VOCs中,1,3-二氯丙烷浓度最高,为1 186.44~4 677.97 ng/L,平均值为2 524.01 ng/L,邻二甲苯浓度最低,平均值仅为0.99 ng/L;各采样点无非致癌健康风险,致癌健康风险在可接受范围内,对水生生物有中等强度生态风险。  相似文献   

13.
苏州市人为源挥发性有机物排放清单及特征   总被引:2,自引:0,他引:2  
华倩雯  冯菁  杨珏  武剑  张园 《环境科学学报》2019,39(8):2690-2698
掌握挥发性有机物(VOCs)排放清单是研究区域大气复合污染和控制策略的基础.本文通过结合国内外学者的源清单研究成果对苏州市人为源VOCs进行系统分类,并根据苏州市相关统计数据和实地调研结果,采用排放因子法建立了苏州市2016年人为源VOCs排放理论值清单.结果表明,2016年苏州市人为源VOCs排放总量约为2.75×10~5 t,其中,生物质燃烧源、化石燃料燃烧源、工业过程源、溶剂使用源、移动源、储存源和生活源分别占排放总量的3.9%、4.3%、22.8%、36.7%、24.0%、6.3%和2.0%.纺织印染、电子设备制造、机械设备制造、橡胶塑料制品生产、基础化学原料制造及建筑装饰、轻型客车制造是苏州市人为源VOCs排放的重点行业(产业),排放量均超过1×10~(4 )t.苏州市各县级市及市辖区中,市辖6区及张家港市的总排放量较高,约占总排放量的60%,张家港市和昆山市的平均排放强度较高,均超过了40 t·km~(-2).  相似文献   

14.
北京市安定生活垃圾填埋场VOCs恶臭物质及其臭气强度   总被引:5,自引:0,他引:5  
挥发性有机物(VOCs)是填埋场重要的恶臭源之一.为了深入了解造成填埋场恶臭的VOCs及其臭气强度情况,在2014年7—8月采用固相微萃取(SPME)-气相色谱(GC)-质谱(MS)联用法测定了北京市安定生活垃圾卫生填埋场内各代表性地点的VOCs.共确认了48种化合物,包括烷烃、烯烃、芳香烃、环烷烃、萜类、酯类、醛酮类、卤代烃、醇类及含硫化合物和含氮化合物.烷烃的种类最多,达到13种,其次是芳香烃,为9种.以内标法和外标法相结合测定了其中35种物质的含量,发现浓度在0.05~40 mg·m~(-3)之间.在厂区入口和作业面浓度最高的VOC是2,2,4,6,6-五甲基庚烷,在沼气干管是甲苯.从实际经验和臭气强度出发,建立了一种恶臭物质筛选方法,即首先以检出频次和各地点浓度比值筛选出可能的恶臭物质,然后由臭气强度确定最终的恶臭物质.筛选结果表明,填埋场内的恶臭VOCs是对伞花烃、对二甲苯、乙苯、甲苯和邻二甲苯,其中对伞花烃和对二甲苯对恶臭贡献尤为显著.这些恶臭VOCs浓度之间呈现出显著的相关关系,表明这些物质均来源于填埋场内生活垃圾的降解过程.  相似文献   

15.
After the application of methionine, a progressive and significant increase occurred in five volatile organic sulfur compounds (VOSCs): methanethiol (MeSH), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and dimethyl tetrasulfide (DMTeS). Even in the untreated control without a methionine addition, methionine and its catabolites (VOSCs, mainly DMDS) were found in considerable amounts that were high enough to account for the water’s offensive odor. However, blackening only occurred in two methionine-amended treatments. The VOSCs production was observed to precede black color development, and the reaching of a peak value for total VOSCs was often followed by water blackening. The presence of glucose stimulated the degradation of methionine while postponing the occurrence of the black color and inhibiting the production of VOSCs. In addition, DMDS was found to be the most abundant species produced after the addition of methionine alone, and DMTeS appeared to be the most important compound produced after the addition of methionine+glucose. These results suggest that methionine acted as an important precursor of the VOSCs in lakes suffering from algea-induced black bloom. The existence of glucose may change the transformation pathway of methionine into VOSCs to form larger molecular weight compounds, such as DMTS and DMTeS.  相似文献   

16.
上海秋季大气挥发性有机物特征及污染物来源分析   总被引:7,自引:0,他引:7  
综合分析了上海地区秋季典型月份挥发性有机物(VOCs)及其他痕量气体的污染水平及特征,VOCs平均小时浓度为63.64′10-9,非甲烷碳氢化合物(NMHCs)占挥发性有机物总量的67.43%;通过对VOCs物种浓度及特征比值分析发现研究区域大气老化现象明显;结合区域后向气流轨迹分析,考察了不同来源气流对区域污染特征的影响,发现陆地传输气流乙烷/乙炔(E/E)值较海上传输气流低,而两者的苯/甲苯(B/T)值没有明显差异.  相似文献   

17.
青藏高原背景站大气VOCs浓度变化特征及来源分析   总被引:2,自引:1,他引:2  
白阳  白志鹏  李伟 《环境科学学报》2016,36(6):2180-2186
采用大气预浓缩与气象色谱/质谱联用法,对2013-09-13到2013-10-14期间在国家大气背景站青海门源站所采集的大气样品进行分析.结果显示,本次研究共检测出38种挥发性有机物(VOCs),其中烷烃16种,烯烃11种,芳香烃9种,卤代烃2种.从组成成分来看,烷烃所占比例最大,达58.6%,烯烃和芳香烃分别占29%和10.5%,卤代烃所占比例最小,仅为1.7%.观测期间大多数VOCs物种呈现白天浓度低、夜晚浓度高的变化趋势,具有明显的高原站点特性,但异戊烷、异戊二烯、甲苯则呈现相反趋势.采用臭氧生成潜势(OFP)对VOCs各组分活性进行分析,各类VOCs中烯烃对OFP贡献最大.利用主成分分析VOCs物种,提取出4个因子,分别归类于燃烧源、天然气和液化石油气的泄露、工业源、生物源.结合HYSPLIT 4.0后向轨迹模型,进一步确定气团的来源与运输途径,发现来自南向的污染源贡献是门源地区VOCs物种浓度增加的主要原因.  相似文献   

18.
分别采集了医院和实验室环境空气样品,通过GC-MS/FID对样品进行定性分析.共定性检测出116种挥发性有机物(VOCs).在这两类环境中检出频次较高的VOCs物种包括乙烷、丙烷、正丁烷等烷烃;乙烯、丙烯、1-丁烯等烯烃;苯、甲苯、乙苯等芳香烃;氯甲烷、二氯甲烷等卤代烃和丙酮等含氧有机物.在实验室中经常使用的试剂如正己烷、甲苯、乙醇、丙酮等呈现较高的水平,高于室外1~3个数量级.在医院的部分候诊区中检出较高浓度的甲苯、乙苯、二甲苯,需要引起关注.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号