首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CORINE land cover database for Ireland (in ARC/INFO) is used to estimate the amount of carbon stored (tonnes) by each land-cover (vegetation) type. Carbon store is the area of each CORINE land-cover type multiplied by its carbon density (t C ha−1). Derivations of these carbon densities are described and limitations of data and other empirical evidence discussed. The total vegetation-carbon stores are calculated for Northern Ireland (3·81 Mt), the Republic of Ireland (19·27 Mt) and Ireland (23·08 Mt). Carbon densities are grouped into classes and their distributions across Ireland are mapped. The vegetation-carbon store is taken to include stems, branches, foliage and roots. It does not include litter, microbial biomass and organic carbon in the soil. Forests store 49% of the vegetation carbon on less than 5% of the total CORINE land area, with a further 22% in other semi-natural vegetation. In contrast, pastures account for 56% of the land-cover area, but only 19% of the carbon store. High carbon densities are found in the west and in uplands, reflecting the distribution of forests and semi-natural vegetation, particularly peatland and moors. The inventory of vegetation-carbon stores is an important first step in attempts to monitor changes in carbon sequestration from, and emissions to, the atmosphere by terrestrial vegetation. Greenhouse gas fluxes, including CO2, and climate warming are global issues which require responses by all countries. Inventories of carbon stores and fluxes therefore need to be comparable between countries so that agreed reductions can be targetted. CORINE land-cover data are available for 19 European Union and adjacent countries and could be used to provide an inventory of carbon stores, and through updating of CORINE, changes in those stores. Commonality in determining the carbon densities of CORINE classes would be required. This study exemplifies how that was achieved in two countries using their national data.  相似文献   

2.
Reduction of carbon emissions from tropical deforestation and forest degradation is being considered a cost-effective way of mitigating the impacts of global warming. If such reductions are to be implemented, accurate and repeatable measurements of forest cover change and biomass will be required. In Papua New Guinea (PNG), which has one of the world's largest remaining areas of tropical forest, we used the best available data to estimate rainforest carbon stocks, and emissions from deforestation and degradation. We collated all available PNG field measurements which could be used to estimate carbon stocks in logged and unlogged forest. We extrapolated these plot-level estimates across the forested landscape using high-resolution forest mapping. We found the best estimate of forest carbon stocks contained in logged and unlogged forest in 2002 to be 4770 Mt (±13%). Our best estimate of gross forest carbon released through deforestation and degradation between 1972 and 2002 was 1178 Mt (±18%). By applying a long-term forest change model, we estimated that the carbon loss resulting from deforestation and degradation in 2001 was 53 Mt (±18%), rising from 24 Mt (±15%) in 1972. Forty-one percent of 2001 emissions resulted from logging, rising from 21% in 1972. Reducing emissions from logging is therefore a priority for PNG. The large uncertainty in our estimates of carbon stocks and fluxes is primarily due to the dearth of field measurements in both logged and unlogged forest, and the lack of PNG logging damage studies. Research priorities for PNG to increase the accuracy of forest carbon stock assessments are the collection of field measurements in unlogged forest and more spatially explicit logging damage studies.  相似文献   

3.
Carbon flows and carbon use in the German anthroposphere: An inventory   总被引:2,自引:0,他引:2  
Today, global climate change is one of the most urgent environmental problems. The atmospheric concentration of carbon dioxide (CO2) has to be stabilised by significant reductions of CO2 emissions in the next decades to keep the expected temperature rise within tolerable borders. Efforts exceeding the implemented measures to reduce CO2 emissions in Germany are desirable. An important pre-condition for such measures is a scientific-based inventory of the sources, sinks, and use of carbon.In this paper, we present CarboMoG, i.e. Carbon Flow Model of Germany. CarboMoG is a carbon flow model covering carbon flows, carbon sources and sinks in Germany and the German anthroposphere, showing concurrent energy and non-energy use of carbon sources.The model consists of seven modules in German anthroposphere following the German classification of economic sectors. Carbon flows to and from atmosphere and lithosphere as well as imports and exports were included into the model. The model comprises roughly 220 material flows determined based on material flow procedures for the base year 2000.Main sources of carbon are fossil energy carriers from lithosphere and uptake of CO2 by crops (52% resp. 48% of all carbon sources). The model calculations show that import of energy carriers dominates total carbon import to Germany (82%). Total non-energy use of carbon in Germany is significantly higher than energy use (386 Mt C and 230 Mt C, resp.). Carbon throughput of Industry is greatest (about 224 Mt C input), followed by Energy (about 129 Mt C input). Agriculture and Forestry & Industry show the highest figure for non-energy use of carbon, energy use of carbon is largest in the Energy sector. Emissions of CO2 to atmosphere account for 94% of all carbon flows to sinks in Germany. Carbon accumulates in German anthroposphere 5 Mt C in 2000.  相似文献   

4.
Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.  相似文献   

5.
ABSTRACT: Wetlands exist in a transition zone between aquatic and terrestrial environments which can be altered by subtle changes in hydrology. Twentieth century climate records show that the United States is generally experiencing a trend towards a wetter, warmer climate; some climate models suggest that this trend will continue and possibly intensify over the next 100 years. Wetlands that are most likely to be affected by these and other potential changes (e.g., sea‐level rise) associated with atmospheric carbon enrichment include permafrost wetlands, coastal and estuanne wetlands, peat lands, alpine wetlands, and prairie pothole wetlands. Potential impacts range from changes in community structure to changes in ecological function, and from extirpation to enhancement. Wetlands (particularly boreal peat‐lands) play an important role in the global carbon cycle, generally sequestering carbon in the form of biomass, methane, dissolved organic material and organic sediment. Wetlands that are drained or partially dried can become a net source of methane and carbon dioxide to the atmosphere, serving as a positive biotic feedback to global warming. Policy options for minimizing the adverse impacts of climate change on wetland ecosystems include the reduction of current anthropogenic stresses, allowing for inland migration of coastal wetlands as sea‐level rises, active management to preserve wetland hydrology, and a wide range of other management and restoration options.  相似文献   

6.
This paper addresses some issues related to the carbon cycle and its utilization by society. Traditional uses for agriculture, forestry, as a source of fuel and other products, and for pastoral farming, among others, have recently been supplemented by identifying its potential for mitigating the increasing concentration of greenhouse gases in the atmosphere. Through the Kyoto Protocol, carbon has become a commodity and the CO(2)-absorbing capability of the vegetation and soils an economically valuable asset. The multi-facetted roles of the C cycle and its sensitivity to human activities present a demand for techniques that permit accurate, timely and affordable characterization of the various components of this cycle, especially on land where most human activities take place. Such techniques must satisfy a range of demands in terms of purpose, clients for the information, and biosphere properties. However, if successful, they offer the potential to support monitoring, reporting, policy setting, and management of terrestrial biospheric resources. The context for these requirements and possibilities is illustrated with reference to the China Carbon Sequestration Project and its findings.  相似文献   

7.
8.
The Kyoto Protocol provides for the involvement of developing countries in an atmospheric greenhouse gas reduction regime under its Clean Development Mechanism (CDM). Carbon credits are gained from reforestation and afforestation activities in developing countries. Bangladesh, a densely populated tropical country in South Asia, has a huge degraded forestland which can be reforested by CDM projects. To realize the potential of the forestry sector in developing countries for full-scale emission mitigation, the carbon sequestration potential of different species in different types of plantations should be integrated with the carbon trading system under the CDM of the Kyoto Protocol. This paper discusses the prospects and problems of carbon trading in Bangladesh, in relation to the CDM, in the context of global warming and the potential associated consequences. The paper analyzes the effects of reforestation projects on carbon sequestration in Bangladesh, in general, and in the hilly Chittagong region, in particular, and concludes by demonstrating the carbon trading opportunities. Results showed that tree tissue in the forests of Bangladesh stored 92tons of carbon per hectare (tC/ha), on average. The results also revealed a gross stock of 190tC/ha in the plantations of 13 tree species, ranging in age from 6 to 23 years. The paper confirms the huge atmospheric CO(2) offset by the forests if the degraded forestlands are reforested by CDM projects, indicating the potential of Bangladesh to participate in carbon trading for both its economic and environmental benefit. Within the forestry sector itself, some constraints are identified; nevertheless, the results of the study can expedite policy decisions regarding Bangladesh's participation in carbon trading through the CDM.  相似文献   

9.
Carbon sequestration through forestry and agroforestry can help mitigate global warming. For Africa, carbon sequestration also represents an opportunity to fund sustainable development through financial inflows. However, with a low share of global carbon trade, there are strong concerns that African countries are losing out on this valuable opportunity. Through a comprehensive review of 23 carbon sequestration projects across 14 countries, this paper discusses ways to overcome critical challenges to scale up carbon investments in Africa. These projects are expected to sequester 26.85 million tCO2 beyond the baseline situation. Within the continent, East Africa is the preferred destination for carbon investors. Most projects are non‐Kyoto compliant and represent voluntary emission reductions. While project benefits such as increased local incomes and improved natural resources are promising, there are concerns that conversion of grasslands into tree plantations can harm local ecosystems. Insecure land tenure constrains new investments and increases the risk that local communities will lose access to forests. Another challenge is that projects with smallholders have high transaction costs. These costs can be overcome by building strong community institutions and simplifying project guidelines. To attract more projects, African governments will need to build their capacity to identify relevant opportunities.  相似文献   

10.
Biosphere greenhouse gas (GHG) management consists of preserving and enhancing terrestrial carbon pools and producing biomass as a fossil fuel substitute. The discussion of this topic has focused primarily on carbon-accounting and project-level issues, particularly relating to carbon sequestration as a source of emissions credits under the Kyoto Protocol. While international consensus on these matters is needed, this paper argues that an important domestic policy agenda also deserves attention. National policies for biosphere GHG management are necessary to bring about large-scale changes in land-use, forestry, and agricultural practices and can address some of the technical and policy issues that have proven to be particularly problematic from carbon-accounting and project-level perspectives. These policies should minimize land-use and resource-management conflicts, account for collateral benefits, and ensure institutional compatibility with existing resource-management regimes. Issues relating to project permanence, leakage, and transaction costs should also be addressed. A range of policy instruments should be used and biosphere GHG management should be one component of an integrated approach to environmental and resource management. Countries promoting biosphere GHG management as an important element of their climate change strategies should be developing these domestic policies to complement international negotiations and to demonstrate that carbon sequestration and biomass production can make an effective contribution to the stabilization of atmospheric GHG concentrations.  相似文献   

11.
Decomposition of soil organic carbon (SOC) is a critical component of the global carbon cycle, and accurate estimates of SOC decomposition are important for forest carbon modeling and ultimately for decision making relative to carbon sequestration and mitigation of global climate change. We determined the major pools of SOC in four sites representing major forest types in China: temperate forests at Changbai Mountain (CBM) and Qilian Mountain (QLM), and sub-tropical forests at Yujiang (YJ) and Liping (LP) counties. A 90-day laboratory incubation was conducted to measure CO(2) evolution from forest soils from each site, and data from the incubation study were fitted to a three-pool first-order model that separated mineralizable soil organic carbon into active (C(a)), slow (C(s)) and resistant (C(r)) carbon pools. Results indicate that: (1) the rate of SOC decomposition in the sub-tropical zone was faster than that in the temperature zone, (2) The C(a) pool comprised approximately 1-3% of SOC with an average mean residence time (MRT) of 219 days. The C(s) pool comprised approximately 25-65% with an average MRT of 78 yr. The C(r) pool accounted for approximately 35-80% of SOC, (3) The YJ site in the sub-tropical zone had the greatest C(a) pool and the lowest MRT, while the QLM in the temperature zone had the greatest MRT for both the C(a) and C(s) pools. The results suggest a higher capacity for long-term C sequestration as SOC in temperature forests than in sub-tropical forests.  相似文献   

12.
Carbon dioxide emission reduction scenarios for Finland are compared with respect to the radiative forcing they cause (heating power due to the absorption of infrared radiation in the atmosphere). Calculations are made with the REFUGE system model using three carbon cycle models to obtain an uncertainity band for the development of the atmospheric concentration. The future emissions from the use of fossil fuels in Finland are described with three scenarios. In the reference scenario (business-as-usual), the emissions and the radiative forcing they cause would grow continuously. In the scenario of moderate emission reduction, the emissions would decrease annually by 1% from the first half of the next century. The radiative forcing would hardly decrease during the next century, however. In the scenario of strict emission reductions, the emissions are assumed to decrease annually by 3%, but the forcing would not decrease until approximately from the middle of the next century depending on the model used. Still, in the year 2100 the forcing would be considerably higher than the forcing in 1990. Due to the slow removal of CO2 from the atmosphere by the oceans, it is difficult to reach a decreasing radiative forcing only by limiting fossil CO2 emissions. The CO2 emissions from fossil fuels in Finland contribute to the global emissions presently by about 0.2%. The relative contribution of Finnish CO2 emissions from fossil fuels to the global forcing due to CO2 emissions is presently somewhat less than 0.2% due to relatively smaller emissions in the past. The impact of the nonlinearity of both CO2 removal from the atmosphere and of CO2 absorption of infrared radiation on the results is discussed.  相似文献   

13.
Hybrid life cycle assessment has been used to assess the environmental impacts of natural gas combined cycle (NGCC) electricity generation with carbon dioxide capture and storage (CCS). The CCS chain modeled in this study consists of carbon dioxide (CO2) capture from flue gas using monoethanolamine (MEA), pipeline transport and storage in a saline aquifer.Results show that the sequestration of 90% CO2 from the flue gas results in avoiding 70% of CO2 emissions to the atmosphere per kWh and reduces global warming potential (GWP) by 64%. Calculation of other environmental impacts shows the trade-offs: an increase of 43% in acidification, 35% in eutrophication, and 120–170% in various toxicity impacts. Given the assumptions employed in this analysis, emissions of MEA and formaldehyde during capture process and generation of reclaimer wastes contributes to various toxicity potentials and cause many-fold increase in the on-site direct freshwater ecotoxicity and terrestrial ecotoxicity impacts. NOx from fuel combustion is still the dominant contributor to most direct impacts, other than toxicity potentials and GWP. It is found that the direct emission of MEA contribute little to human toxicity (HT < 1%), however it makes 16% of terrestrial ecotoxicity impact. Hazardous reclaimer waste causes significant freshwater and marine ecotoxicity impacts. Most increases in impact are due to increased fuel requirements or increased investments and operating inputs.The reductions in GWP range from 58% to 68% for the worst-case to best-case CCS system. Acidification, eutrophication and toxicity potentials show an even large range of variation in the sensitivity analysis. Decreases in energy use and solvent degradation will significantly reduce the impact in all categories.  相似文献   

14.
Carbon sinks and sources in China's forests during 1901-2001   总被引:1,自引:0,他引:1  
This paper reports the annual carbon (C) balance of China's forests during 1901-2001 estimated using the Integrated Terrestrial Ecosystem C-budget model (InTEC). Annual carbon source and sink distributions are simulated for the same period using various spatial datasets including land cover and leaf area index (LAI) obtained from remote sensing, soil texture, climate, forest age, and nitrogen deposition. During 1901-1949, China's forests were a source of 21.0+/-7.8 Tg C yr(-1) due to disturbances (human activities). Its size increased to 122.3+/-25.3 Tg C yr(-1) during 1950-1987 due to intensified human activities in the late 1950s, early 1960s, 1970s and early 1980s. The forests became large sinks of 176.7+/-44.8 Tg C yr(-1) during 1988-2001, owing to large-scale plantation and forest regrowth in previously disturbed areas as well as growth stimulation by nondisturbance factors such as climatic warming, atmospheric CO(2) fertilization, and N deposition. From 1901 to 2001, China's forests were a small carbon source of 3.32 Pg C, about 32.9+/-22.3 Tg C yr(-1). The overall C balance in biomass from InTEC generally agrees with previous results derived from forest inventories of China's forests. InTEC results also include C stock variation in soils and are therefore more comprehensive than previous results. The uncertainty in InTEC results is still large, but it can be reduced if a detailed forest age map becomes available.  相似文献   

15.
Agricultural management practices that enhance C sequestration, reduce greenhouse gas emission (nitrous oxide [N?O], methane [CH?], and carbon dioxide [CO?]), and promote productivity are needed to mitigate global warming without sacrificing food production. The objectives of the study were to compare productivity, greenhouse gas emission, and change in soil C over time and to assess whether global warming potential and global warming potential per unit biomass produced were reduced through combined mitigation strategies when implemented in the northern U.S. Corn Belt. The systems compared were (i) business as usual (BAU); (ii) maximum C sequestration (MAXC); and (iii) optimum greenhouse gas benefit (OGGB). Biomass production, greenhouse gas flux change in total and organic soil C, and global warming potential were compared among the three systems. Soil organic C accumulated only in the surface 0 to 5 cm. Three-year average emission of N?O and CH was similar among all management systems. When integrated from planting to planting, N?O emission was similar for MAXC and OGGB systems, although only MAXC was fertilized. Overall, the three systems had similar global warming potential based on 4-yr changes in soil organic C, but average rotation biomass was less in the OGGB systems. Global warming potential per dry crop yield was the least for the MAXC system and the most for OGGB system. This suggests management practices designed to reduce global warming potential can be achieved without a loss of productivity. For example, MAXC systems over time may provide sufficient soil C sequestration to offset associated greenhouse gas emission.  相似文献   

16.
王青海 《四川环境》1996,15(2):45-48
全球温室效应正在缓慢地进行。本文首次探讨气候变暖对岩溶发育环境的影响,并预测了大气CO2浓度加倍时中国南北方碳酸盐岩化学溶蚀速率。  相似文献   

17.
Carbon capture and storage (CCS) may play a central role in managing carbon emissions from the power sector and industry, but public support for the technology is unclear. To address this knowledge gap, and to test the use of discrete choice analysis for determining public attitudes, two focus groups and a national survey were conducted in Canada to investigate the public's perceptions of the benefits and risks of CCS, the likely determinants of public opinion, and overall support for the use of CCS.The results showed slight support for CCS development in Canada, and a belief that CCS is less risky than normal oil and gas industry operations, nuclear power, or coal-burning power plants. A majority of respondents indicate that they would support the use of CCS as part of a greenhouse gas reduction strategy, although it would likely have to be used in combination with energy efficiency and alternative energy technologies in order to retain public support.  相似文献   

18.
The geological storage of carbon dioxide is currently being considered as a possible technology for reducing emissions to atmosphere. Although there are several operational sites where carbon dioxide is stored in this way, methods for assessing the long-term performance and safety of geological storage are at an early stage of development. In this paper the similarities and differences between this field and the geological disposal of radioactive wastes are considered. Priorities are suggested for the development of performance assessment methods for carbon dioxide storage based on areas where experience from radioactive waste disposal can be usefully applied. These include, inter alia, dealing with the various types of uncertainty, using systematic methodologies to ensure an auditable and transparent assessment process, developing whole system models and gaining confidence to model the long-term system evolution by considering information from natural systems. An important area of data shortage remains the potential impacts on humans and ecosystems.  相似文献   

19.
Numerous innovative approaches to mitigate effects of excessive emission of greenhouse gases (GHGs) on global climate change are being proposed and formulated. Sequestering carbon to terrestrial ecosystems represents one of the important clean development mechanisms. Reforestation through converting various non-forest lands to forests is undoubtedly an important dimension of carbon sequestration. Using Liping County in Guizhou Province as a case region, this study examines the perceived change in social and economic livelihoods of peasants and the factors responsible for the variations in the changes. The results of the study reveal that socio-economic changes associated with the government-financed project are multifaceted and profound. Because of the financial subsidies provided by the central government, this environmental action in many aspects can be regarded as a poverty reduction measure in the underdeveloped area where rural poverty is widespread. A majority of peasant households have benefited from project participation. The land conversion project with continued financial support also contributes to the social transformations of traditional rural society in remote areas to a more mobile, less subsistence agriculture-based, and open society.  相似文献   

20.
This paper builds on and extends previous research to contribute to ongoing discussion on the use of resource and carbon accounting tools in regional policy making. The Northern Visions project has produced the first evidence-based footpath setting out the actions that need to be taken to achieve the step changes in the Ecological and Carbon Footprint of Northern Ireland. A range of policies and strategies were evaluated using the Resources and Energy Analysis Programme. The analysis provided the first regional evidence base that current sustainable development policy commitments would not lead to the necessary reductions in either the Ecological Footprint or carbon dioxide emissions. Building on previous applications of Ecological Footprint analysis in regional policy making, the research has demonstrated that there is a valuable role for Ecological and Carbon Footprint Analysis in policy appraisal. The use of Ecological and Carbon Footprint Analysis in regional policy making has been evaluated and recommendations made on ongoing methodological development. The authors hope that the research can provide insights for the ongoing use Ecological and Carbon Footprint Analysis in regional policy making and help set out the priorities for research to support this important policy area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号