共查询到3条相似文献,搜索用时 0 毫秒
1.
From 2003 to 2006, a consortium of six European partners analysed the future of olive production systems on sloping land in the Mediterranean basin. Olive production on such land dates back to pre-Roman times, but the production systems (known by the acronym SMOPS, for "Sloping and Mountainous Olive Production Systems"), are under threat. Many are unsustainable environmentally (erosion hazard), socially (exodus of young people) or economically (high labour costs). The OLIVERO research project was possible thanks to a grant of euro1.5 million from the European Union, which gives out euro2.5 billion in subsidies annually for olive production. An extended survey conducted by the project in five sites in Portugal, Spain, Italy and Greece revealed the diversity and multifunctionality of SMOPS. Four main systems were identified as important for the future: traditional, organic, semi-intensive and intensive. The conceptual framework of OLIVERO involved six phases, ranging from the initial survey up to policy recommendations. In all phases there was intensive contact with stakeholders and institutions. End-users were identified at three levels: local, intermediate and regional, and national/international. This paper presents the highlights of the physical analysis of land and water resources, crop and land management, and economics and policies. Scenario studies gave insight into the possible future: some SMOPS will be gradually abandoned or transformed into nature conservation areas, others will exploit drip irrigation and follow the intensification patterns of agriculture in the valleys, and a third group will continue to be managed more extensively, perhaps augmenting their income with other activities (possibly off-farm) or turning to organic production systems. At the five international OLIVERO meetings held from 2003 to 2006, knowledge, experience and ideas on the future of olive production systems were intensively exchanged. A network was established for ongoing and future cooperation. Two end-user seminars were held in Matera (Italy) and Lisbon. Over 70 scientific papers have been published. 相似文献
2.
Soil erosion and non-point source pollution impacts assessment with the aid of multi-temporal remote sensing images 总被引:10,自引:0,他引:10
Soil erosion associated with non-point source pollution is viewed as a process of land degradation in many terrestrial environments. Careful monitoring and assessment of land use variations with different temporal and spatial scales would reveal a fluctuating interface, punctuated by changes in rainfall and runoff, movement of people, perturbation from environmental disasters, and shifts in agricultural activities and cropping patterns. The use of multi-temporal remote sensing images in support of environmental modeling analysis in a geographic information system (GIS) environment leading to identification of a variety of long-term interactions between land, resources, and the built environment has been a highly promising approach in recent years. This paper started with a series of supervised land use classifications, using SPOT satellite imagery as a means, in the Kao-Ping River Basin, South Taiwan. Then, it was designed to differentiate the variations of eight land use patterns in the past decade, including orchard, farmland, sugarcane field, forest, grassland, barren, community, and water body. Final accuracy was confirmed based on interpretation of available aerial photographs and global positioning system (GPS) measurements. Finally, a numerical simulation model (General Watershed Loading Function, GWLF) was used to relate soil erosion to non-point source pollution impacts in the coupled land and river water systems. Research findings indicate that while the decadal increase in orchards poses a significant threat to water quality, the continual decrease in forested land exhibits a potential impact on water quality management. Non-point source pollution, contributing to part of the downstream water quality deterioration of the Kao-Ping River system in the last decade, has resulted in an irreversible impact on land integrity from a long-term perspective. 相似文献
3.
Vera Ferreira André Samora-Arvela 《Journal of Environmental Planning and Management》2016,59(7):1238-1256
Climate and land-use/cover changes (LUCC) influence soil erosion vulnerability in the semi-arid region of Alqueva, threatening the reservoir storage capacity and sustainability of the landscape. Considering the effect of these changes in the future, the purpose of this study was to investigate soil erosion scenarios using the Revised Universal Soil Loss Equation (RUSLE) model. A multi-agent system combining Markov cellular automata with multi-criteria evaluation was used to investigate LUCC scenarios according to delineated regional strategies. Forecasting scenarios indicated that the intensive agricultural area as well as the sparse and xerophytic vegetation and rainfall-runoff erosivity would increase, consequently causing the soil erosion to rise from 1.78 Mg ha?1 to 3.65 Mg ha?1 by 2100. A backcasting scenario was investigated by considering the application of soil conservation practices that would decrease the soil erosion considerably to an average of 2.27 Mg ha?1. A decision support system can assist stakeholders in defining restrictive practices and developing conservation plans, contributing to control the reservoir's siltation. 相似文献