首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Past research on fluvial dynamics at the confluence of two alluvial rivers has mainly focused on downstream flow structure and bed scoring, often using laboratory experiments and numerical modeling. Little is investigated about yearly and episodic dynamics of confluence mouth bars that can affect downstream morphology using field measurements. In this study, we analyzed the migration of a confluence mouth bar of two free meandering alluvial rivers, the Amite and Comite Rivers in coastal Louisiana, USA from 2002 to 2017. Remote sensing images were utilized to investigate the decade‐long morphologic changes. To assess episodic dynamics, we employed terrestrial laser scanning measurements to acquire high‐accuracy digital elevation models at the confluence before and after three floods in 2017. Our study found that the Amite‐Comite confluence mouth bar migrated downstream 55 m in the past 15 years, and its angle reduced by 55° from 100° to 45°. The fast migration was a result of sediment deposition and channel deformation around the confluence mainly during the years when the tributary‐to‐main channel discharge was lower (<0.25). The study further reveals that a single moderate flood could strongly affect the mouth bar, as shown by an increase of the projected surface area by 114% and an increase of volume of the confluence mouth bar by 68%.  相似文献   

2.
ABSTRACT: The important ecological and hydrological roles of wetlands are widely recognized, but the geomorphic functions of wetlands are also critical. Wetlands can be defined in geomorphic, as well as in hydrological or biological terms, and a geomorphic definition of wetlands is proposed. An analysis of fluvial sediment budget studies shows that wetlands typically serve as short-term sediment sinks or longer-term sediment storage sites. In ten study basins of various sizes, an estimated 14 to 58 percent of the total upland sediment production is stored in alluvial wetland or other aquatic environments. Of the sediment reaching streams, 29 to 93 percent is stored in alluvial wetland or channel environments. For basins of more than 100 km2, more than 15 percent of total upland sediment production and more than 50 percent of sediment reaching streams is deposited in wetlands. The data underestimates the magnitude of wetland sediment storage due to the lack of data from large river systems. A theoretical analysis of river channel sediment delivery shows that wetland and aquatic sediment storage is inevitable in fluvial systems and systematically related to basin size. Results suggest that wetlands should be managed in the context of drainage basins, rather than as discrete, independent units.  相似文献   

3.
/ Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream). Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources.KEY WORDS: Dams; Aquatic habitat; Sediment transport; Erosion; Sedimentation; Gravel mining  相似文献   

4.
ABSTRACT: The Gunnison River in the Gunnison Gorge is a canyon river where upstream dams regulate mainstem discharge but do not affect debris-flow sediment supply from tributaries entering below the reservoirs. Regulation since 1966 has altered flood frequency, streambed mobility, and fluvial geomorphology creating potential resource-management issues. The duration of moderate streamflows between 32.3 and 85.0 m3/s has increased threefold since 1966. This, along with flood-peak attenuation, has facilitated fine-sediment deposition and vegetation encroachment on stream banks. The Shields equation and on-site channel geometry and bed-material measurements were used to assess changes in sediment entrainment in four alluvial reaches. Sand and fine gravel are transported through riffle/pool reaches at most discharges, but the cobbles and boulders composing the streambed in many reaches now are infrequently entrained. Periodic debris flows add coarse sediment to rapids and can increase pool elevation and the streambed area affected by backwater and fine-sediment accumulation. Debris-flow supplied boulders accumulate on fans and in rapids and constrict the channel until reworked by larger floods. The response to streamflow-régime changes in the Gunnison Gorge could serve as an analog for alluvial reaches in other regulated canyon rivers.  相似文献   

5.
ABSTRACT: To comprehend the distributions of salinity, temperature, and suspended sediment in the Danshuei River estuary in Taiwan, monthly field surveys were conducted in 2003. These included several high and low slackwater surveys and intensive surveys. The results show that the Danshuei River estuary is predominately a partially mixed estuary. The highest concentration of suspended sediment is typically observed at the Chung‐Hsin Bridge, the most upstream sampling station. The suspended sediment concentration exhibits a general decreasing trend in the downstream direction. It may be concluded that the sediments mostly come from the upstream reach. A locally high concentration of suspended sediment is found at the Kuan‐Du station because of the local deep channel bathymetry and two‐layered estuarine circulation. A vertical two‐dimensional hydrodynamic and sediment transport model is applied to investigate the tidally averaged salinity distribution, residual circulation, and suspended sediment concentration. The modeling results reveal that, under the Q75 flow condition (i.e., low flow), a turbidity maximum occurs at the Kuan‐Du station due to the strong estuarine circulation. The model simulation with a much higher river flow condition results in a weaker residual circulation and weaker turbidity maximum.  相似文献   

6.
ABSTRACT: In 1976–77, benthic invertebrates were sampled at four sites in a 410-kilometer reach of the lower Mississippi River to define the communities in the river and to determine differences between communities upstream and downstream from the industrial and municipal complexes of Baton Rouge and New Orleans, Louisiana. The most common and most numerous organisms collected were Corbicula and tubificid worms. The benthic community structure of the lower Mississippi River is influenced by substrate type and stability, channel geometry, river velocity, vegetation and organic detritus, and salinity. Sampling stations near the left and right banks had low velocities, and substrate types ranged from medium silt to very fine sand. Burrowing organisms such as tubificids, chironomids, and ephemerid-type mayflies dominated these environments. At the center, left-center, and right-center stations, velocities were higher and substrate materials were coarser than at the bank stations; only Corbicula was present in large numbers. Near the river mouth, salinity and aquatic vegetation greatly affect the benthic community structure. Differences in benthic community structure in the Mississippi River are due primarily to different hydrologic conditions. Industrial and municipal wastes discharged into the river appear to have little or no widespread effects on benthic populations.  相似文献   

7.
The Truckee River heads in the Sierra Nevada at Lake Tahoe, and terminates in Pyramid Lake. During the 1969 water year, flow about 9 miles upstream from the mouth (974,000 acre-ft) was almost four times the long-term average, due mainly to heavy winter rains and spring snowmelt. A short period of low-altitude rainfall produced the highest concentrations of suspended sediment, whereas a much longer subsequent period of snowmelt yielded a much greater total quantity of material. The upper 90 percent of the basin yielded about 260 acre-feet (630,000 tons) of sediment at the Nixon gage, whereas an estimated 2,800 acre-feet (6.8 million tons) was contributed by erosion of about 200 acres of river bank below the gage. Solute content at the gage ranged from 80 to 450 mg/l, dominated by calcium, sodium, and bicarbonate, plus silica in the most dilute snowmelt and chloride in the most concentrated low flows. Solute load totaled about 130,000 tons, of which the principal constituents in Pyramid Lake-sodium plus equivalent bicarbonate and chloride-amounted to almost 40,000 tons. The total solute load during a year of average flow may be 45,000-55,000 tons, including 18,000-22,000 tons of principal lake constituents.  相似文献   

8.
Management of Sedimentation in Tropical Watersheds   总被引:2,自引:0,他引:2  
/ The sedimentation of reservoirs is a serious problem throughout the tropics, yet most attempts to control sedimentation in large river basins have not been very successful. Reliable information on erosion rates and sources of sediments has been lacking. In regions where geologically unstable terrain combines with high rainfall, natural erosion rates might be so high that the effects of human activity are limited. Estimates of natural erosion in these situations often have been poor because of the episodic nature of most erosion during large storms and because mass-wasting may supply much of the sediment. The predominance of mass-wasting in some watersheds can result in an unexpectedly high ratio of bedload to suspended load, shifting sedimentation to "live" rather than "dead" storage within reservoirs. Furthermore, the inappropriate use of the Universal Soil Loss Equation to assess the effectiveness of erosion control measures has led to inaccurate estimates of the sediment reduction benefits that could accrue to watershed treatment efforts. Although reducing erosion from cultivated areas is desirable for other reasons, efforts aimed at reducing reservoir sedimentation by controlling agricultural sources of erosion may have limited benefits if the principal sources are of natural origin or are associated with construction of the dams and reservoirs and with rural roads and trails. Finally, the most appropriate locations for watershed rehabilitation depend on the magnitude of temporary storage of colluvium and alluvium within the river basin: Where storage volume is large and residence time of sediment very long, reducing agricultural erosion may have limited impacts on sedimentation within the expected life of a reservoir. Systematic development and analysis of sediment budgets for representative watersheds is needed to address these limitations and thereby improve both the planning of river basin development schemes and the allocation of resources towards reducing sedimentation. When sedimentation of reservoirs is the key issue, sediment budgets must focus especially on channel transport rates and sediment delivery from hillsides. Sediment budgets are especially critical for tropical areas where project funds and technical help are limited. Once sediment budgets are available, watershed managers will be able to direct erosion control programs towards locations where they will be most effective. KEY WORDS: Tropical watersheds; Sedimentation; Reservoirs; Erosion control  相似文献   

9.
Abstract: This study used an innovative GIS/remote sensing approach to study historical river channel changes in the Huron River, a wandering gravel‐bedded river in northern Ohio. Eight sets of historical aerial photographs (1958‐2003) span the construction of a low‐head dam (1969), removal of the spillway (1994), and removal of the dam itself (2002). Construction of the dam modified stream gradients >4 km upstream of the small impounded reservoir. This study tracked changes in the polygon size, shape, and centroid position of 12 sand‐gravel bars through a study reach 0.2‐4.1 km upstream of the dam. These bars were highly responsive, tending to migrate obliquely downstream and toward the outer bank at rates up to 9 m/year. Historical changes in the size and position of the bars can be interpreted as the downstream translation of one or more sediment waves. Prior to dam construction, a sediment wave moved downstream through the study reach. Following construction of the dam, this sediment wave became stationary and degraded in situ by dispersion. The growth of bars throughout the study reach during this time interval resulted in a progressive increase in channel sinuosity. Removal of the spillway rejuvenated downstream translation of a sediment wave through the study reach and was followed by a reduction in channel sinuosity. These results illustrate that important geomorphologic changes can occur upstream of low‐head dams. This may be a neglected area of research about the effects of dams and dam removals.  相似文献   

10.
The Clinch River, in eastern United States, supports a diverse freshwater fauna including endangered mussels. Although mussel populations are stable in the Clinch's northeastern Tennessee segment, long‐term declines have been documented upstream in Virginia. We analyzed water and sediment quality data collected by government agencies from the 1960s through 2013 in an effort to inform current management. The river was divided into sections considering data availability and major tributaries. We tested for spatial differences among river sections and for temporal trends, and compared measured values to potentially protective levels if available. Ammonia concentrations approaching and exceeding protective levels were recorded, most often during the 1970s and 1980s in upstream sections. Sediment metals occurred at levels potentially causing biological effects, mainly during the 1980s and 1990s. In the 2000s, water‐column metals have been well below protective levels for general aquatic life. Dissolved solids (DS) increased in most river sections over the study period but mussel‐specific protective levels are not known. Analysis of water pH, total N, and total P did not generate conservation concern. Enhanced monitoring for sediment metals, water‐column metals, and ionic composition of DS; closer alignment of agency water monitoring practices in the two states; and research to determine biological effects of DS at current and anticipated levels can aid future conservation management.  相似文献   

11.
Wetland conservation is a critical environmental management issue. An emerging approach to this issue involves the construction of wetland environments. Because our understanding of wetlands function is incomplete and such projects must be monitored closely because they may have unanticipated impacts on ecological, hydrological, and geomorphological systems. Assessment of project-related impacts on stream channel stability is an important component of riverine wetlands construction and operation because enhanced erosion or deposition associated with unstable rivers can lead to loss of property, reductions in channel capacity, and degradation of water quality, aquatic habitat, and riparian aesthetics. The water/sediment budget concept provides a scientific framework for evaluating the impact of riverine wetlands construction and operation on stream channel stability. This concept is based on the principle of conservation of mass, i.e., the total amount of water and sediment moving through a specific reach of river must be conserved. Long-term measurements of channel sediment storage and other water/sediment budget components provide the basis for distinguishing between project-related impacts and those resulting from other causes. Changes in channel sediment storage that occur as a result of changes in internal inputs of water or sediment signal a project-related impact, whereas those associated with changes in upstream or tributary inputs denote a change in environmental conditions elsewhere in the watershed. A geomorphic assessment program based on the water/sediment budget concept has been implemented at the site of the Des Plaines River Wetlands Demonstration Projection near Chicago, Illinois, USA. Channel sediment storage changed little during the initial construction phase, suggesting that thus far the project has not affected stream channel stability.  相似文献   

12.
River engineers use sediment transport formulas to design regulated channels in which the river's ability to transport bedload would remain in equilibrium with the delivery of materials from upstream. In gravel-bed rivers, a number of factors distort the simple relationship between particle size and hydraulic parameters at the threshold of sediment motion, inherent in the formulas. This may lead to significant errors in predicting the bedload transport rates in such streams and hence to instability of their regulated channels. The failure to recognize a nonstationary river regime may also result in unsuccessful channelization. Rapid channel incision has followed channelization of the main rivers of the Polish Carpathians in the 20th century. A case study of the Raba River shows that incision has resulted from the increase in stream power caused by channelization and the simultaneous reduction in sediment supply due to variations in basin management and a change in flood hydrographs. Calculations of bedload transport in the river by the Meyer-Peter and Müller formula are shown to have resulted in unrealistic estimates, perhaps because the different degree of bed armoring in particular cross-sections was neglected. It would have been possible to avoid improper channelization if the decreasing trend in sediment load of the Carpathian rivers had been recognized on the basis of geomorphological and sedimentological studies. Allowing the rivers to increase their sinuosity, wherever possible without an erosional threat to property and infrastructure, and preventing further in-stream gravel mining are postulated in order to arrest channel incision and reestablish the conditions for water and sediment storage on the floodplains.  相似文献   

13.
Understanding how hydraulic factors control alluvial river meander migration can help resource managers evaluate the long-term effects of floodplain management and bank stabilization measures. Using a numerical model based on the mechanics of flow and sediment transport in curved river channels, we predict 50 years of channel migration and suggest the planning and ecological implications of that migration for a 6.4-km reach (river miles 218–222) of the Sacramento River near the Woodson Bridge State Recreation Area, California, USA. Using four different channel management scenarios, our channel migration simulations suggest that: (1) channel stabilization alters the future channel planform locally and downstream from the stabilization; (2) rock revetment currently on the bank upstream from the Woodson Bridge recreation area causes more erosion of the channel bank at the recreation area than if the revetment were not present; (3) relocating the channel to the west and allowing subsequent unconstrained river migration relieves the erosion pressure in the Woodson Bridge area; (4) the subsequent migration reworks (erodes along one river bank and replaces new floodplain along the other) 26.5 ha of land; and (5) the river will rework between 8.5 and 48.5 ha of land in the study reach (over the course of 50 years), depending on the bank stabilization plan used. The reworking of floodplain lands is an important riparian ecosystem function that maintains habitat heterogeneity, an essential factor for the long-term survival of several threatened and endangered animal species in the Sacramento River area.  相似文献   

14.
Sediment size and supply exert a dominant control on channel structure. We review the role of sediment supply in channel structure, and how regional differences in sediment supply and landuse affect stream restoration priorities. We show how stream restoration goals are best understood within a common fluvial geomorphology framework defined by sediment supply, storage, and transport. Landuse impacts in geologically young landscapes with high sediment yields (e.g., coastal British Columbia) typically result in loss of instream wood and accelerated sediment inputs from bank erosion, logging roads, hillslopes and gullies. In contrast, northern Sweden and Finland are landscapes with naturally low sediment yields caused by low relief, resistant bedrock, and abundant mainstem lakes that act as sediment traps. Landuse impacts involved extensive channel narrowing, removal of obstructions, and bank armouring with boulders to facilitate timber floating, thereby reducing sediment supply from bank erosion while increasing export through higher channel velocities. These contrasting landuse impacts have pushed stream channels in opposite directions (aggradation versus degradation) within a phase-space defined by sediment transport and supply. Restoration in coastal British Columbia has focused on reducing sediment supply (through bank and hillslope stabilization) and restoring wood inputs. In contrast, restoration in northern Fennoscandia (Sweden and Finland) has focused on channel widening and removal of bank-armouring boulders to increase sediment supply and retention. These contrasting restoration priorities illustrate the consequences of divergent regional landuse impacts on sediment supply, and the utility of planning restoration activities within a mechanistic sediment supply-transport framework.  相似文献   

15.
In France and the United States it has been shown that strong linkages exist between vegetation and alluvial landforms within homogeneous river stretches characterized by geomorphological processes, flood duration, flood magnitude, flood frequency, and sediment size. Furthermore, perturbations induced by man (such as embankments and damming) have been shown to have an effect on both succession and plant distribution patterns. Yet, in numerous cases it is not possible to find either the communities or the plants whose presence might be predicted by reference to the river section characteristics (such as straight, braided, anastomosed, or meandering channels) or by reference to perturbation effects well known in piedmont valleys (such as variations of the water-table depth, variations of magnitude, and frequency and duration of floods). Unexpected species, new communities, and even new successional sequences are often observed. The presence of new alluvial forms explains these differences. An “artificial” substratum generated by an old human perturbation (limited in the time) has been established in the past; consequently, the natural distribution patterns of water and matter flows have been disturbed. Archive research has enabled a classification of abandoned systems that were commonly used during the 16th, 17th, 18th, and 19th centuries on European floodplains. Several case studies were chosen in order to illustrate and explain the importance of stream corridor history. The example of the Isère River valley, downstream from Albertville, is chosen to highlight the heterogeneity of the vegetation mosaïc pattern outside the dikes. The historical reconstruction explains the role of the additional disturbances that cause deviation from the system evolution patterns.  相似文献   

16.
River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies.  相似文献   

17.
ABSTRACT: Much of the Obion River in western Tennessee was channelized into the 1960s. Stage data from three stream-flow gaging stations on the Obion were used to determine how channelization affected flood frequency and annual maximum stage. Channelization affected the upper and lower Obion River differently. Flooding has become infrequent on the upper Obion River since channelization, even during the winter and spring which is the wettest time of year. In contrast, except for the winter months, there has been little effect on flood frequency on the lower Obion River where stage is highly dependent on the Mississippi River. The Mississippi River often backs up and floods the Obion River more than 50 km above its mouth and may contribute to flooding at an even greater distance upstream by reducing the water-surface gradient and slowing discharge. Channelization on the upper section of the river and many of the small tributaries has increased flow efficiency, but has also caused channel erosion and downstream deposition, reducing the cross-sectional channel area and possibly contributing to downstream flooding. Maximum annual stages at the upper and lower Obion River changed little. Therefore, the maximum surface area, submerged at least once each year, has been unaffected by channelization.  相似文献   

18.
The Gunnison River in the Black Canyon of the Gunnison National Park (BCNP) near Montrose, Colorado is a mixed gravel and bedrock river with ephemeral side tributaries. Flow rates are controlled immediately upstream by a diversion tunnel and three reservoirs. The management of the hydraulic control structures has decreased low-frequency, high-stage flows, which are the dominant geomorphic force in bedrock channel systems. We developed a simple model to estimate the extent of sediment mobilization at a given flow in the BCNP and to evaluate changes in the extent and frequency of sediment mobilization for flow regimes before and after flow regulation in 1966. Our methodology provides a screening process for identifying and prioritizing areas in terms of sediment mobility criteria when more precise systematic field data are unavailable. The model uses the ratio between reach-averaged bed shear stress and critical shear stress to estimate when a particular grain size is mobilized for a given reach. We used aerial photography from 1992, digital elevation models, and field surveys to identify individual reaches and estimate reach-averaged hydraulic geometry. Pebble counts of talus and debris fan deposits were used to estimate regional colluvial grain-size distributions. Our results show that the frequency of flows mobilizing river bank sediment along a majority of the Gunnison River in the BCNP has significantly declined since 1966. The model results correspond well to those obtained from more detailed, site-specific field studies carried out by other investigators. Decreases in the frequency of significant sediment-mobilizing flows were more pronounced for regions within the BCNP where the channel gradient is lower. Implications of these results for management include increased risk of encroachment of vegetation on the active channel and long-term channel narrowing by colluvial deposits. It must be recognized that our methodology represents a screening of regional differences in sediment mobility. More precise estimates of hydraulic and sediment parameters would likely be required for dictating quantitative management objectives within the context of sediment mobility and sensitivity to changes in the flow regime.  相似文献   

19.
The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil–water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30–40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.  相似文献   

20.
ABSTRACT: Accurate prediction of hydrodynamics is of great importance to modeling contaminant transport and water quality in a river. Flow conditions are needed in estimating potential exposure contamination levels and the recovery time for a no-action alternative in contaminated sediments remediation. Considering highly meandering characteristics of the Buffalo River, New York, a three-dimensional hydrodynamic model was selected to route upstream flows through the 8-km river section with limited existing information based on the model's fully predictive capability and process-oriented feature. The model was employed to simulate changes in water depth and flow velocity with space and time in response to variation in flow rate and/or water surface elevation at boundaries for given bottom morphometry and initial conditions. Flow conditions of the river reach where historical flow data are not available were computed. A rating-curve approach was developed to meet continuous and event contaminant modeling needs. Rating curves (depth-discharge and velocity-discharge relationships) were constructed at selected stations from the 3-D hydrodynamic simulations of individual flow events. The curves were obtained as steady solutions to an unsteady problem. The rating-curve approach serves to link flow information provided by the hydrodynamic model to a contaminant transport model. With the approach, the linking problem resulting from incompatible model dimensions and grid sizes can be solved. The curves will be used to simulate sediment movement and to predict contaminant fate and transport in the river.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号