首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various natural or provoked situations can cause significant variations in redox conditions that can induce reductive dissolution of soil components. When this happens, heavy metals that may be bound to solid phases are released. A surface desorption-dissolution model, which takes into account the effect of reductive conditions on surface site density, was established. This model is based on conventional reactions of surface hydroxyl groups, surface complexation reactions with cations and double-layer theory. The solid dissolution rate was taken into account, by following changes in total surface site number (i.e., cation exchange capacity [CEC]) under reductive conditions. This term was introduced in an electrostatic desorption model. Curves obtained by this calculation provided a good fit of experimental data as shown by statistical parameters. Experimental data corresponded to Pb and Cd released from a cultivated soil under reductive conditions induced by sodium ascorbate.  相似文献   

2.
Conditions affecting the release of phosphorus from surface lake sediments   总被引:10,自引:0,他引:10  
Laboratory studies were conducted to determine the effect of pH and redox conditions, as well as the effect of Fe, Mn, Ca, Al, and organic matter, on the release of ortho-phosphates in lake sediments taken from Lakes Koronia and Volvi (Northern Greece). Results were evaluated in combination with experiments to determine P fractionation in the sediment. The study revealed the major effect of redox potential and pH on the release of P from lake sediments. Both lakes showed increased release rates under reductive conditions and high pH values. The fractionation experiments revealed increased mobility of the reductive P fraction as well as of the NaOH-P fraction, indicating participation of both fractions in the overall release of sediment-bound P, depending on the prevailing environmental conditions. The results were assessed in combination with the release patterns of Fe, Mn, Ca, Al, and organic matter, enabling the identification of more specific processes of P release for each lake. The basic release patterns included the redox induced reductive dissolution of P-bearing metal oxides and the competitive exchange of phosphate anions with OH- at high pH values. The formation of an oxidized surface microlayer under oxic conditions acted as a protective film, preventing further P release from the sediments of Lake Volvi, while sediments from Lake Koronia exhibited a continuous and increased tendency to release P under various physicochemical conditions, acting as a constant source of internal P loading.  相似文献   

3.
This paper deals with process identification and model development for the case of a porous reference material leaching under certain hydrodynamic conditions. Four different dynamic leaching tests have been applied in order to take into account different types of solid/liquid contact conditions corresponding to various real leaching scenarios: monolithic and granular material with sequential eluate renewal, and granular material and continuously renewed eluate with different hydrodynamic conditions (dispersion, residence time). A coupled chemical-mass transfer model has been developed to describe the leaching behaviour under all experimental conditions. Diffusion has been considered as the mass transport mechanism inside the saturated porous material and dispersive convection as that in the leachate. Two specific phenomena have been identified and considered in the model: (i) the early surface dissolution of the material which results in high Ca concentration and (ii) the late weak dissolution of Na and K giving rise to a long-term residual release. The intrinsic material parameters such as the initial concentrations in the pore water and solid phases were determined by applying equilibrium leaching tests and geochemical modelling. Diffusion coefficients for different elements and the late solubility of alkalines have been found to reach the same values in the four tests. The estimated values of the surface dissolution kinetic constant have shown a dependence on leachate hydrodynamics when the thickness of the degraded layer is nearly the same in the four tests (intrinsic parameter of the material). The competition between the four main dynamic processes, i.e. diffusion, convection, late dissolution, and surface dissolution, has been emphasized and compared in the four leaching tests: the hydrodynamic dispersion and the residence time had no effect on the leaching behaviour of alkalines, which is controlled by diffusion, whereas the behaviour of calcium (a major element of the material) was strongly influenced. This has significant effects on eluate pH values and on the concentration of Pb (the monitored pollutant). The model was then applied to simulate a landfill scenario in the case of a stabilized/solidified incinerator residue containing heavy metals and chloride. A high rain infiltration level and the use of small blocs are favourable conditions for enhanced pollutant release.  相似文献   

4.
This study examines slag, fly ash, and deposited particles during melting of dewatered sewage sludge in a pilot plant. In addition, the chemical composition of particles in flue gas was simulated using a thermodynamics program, namely FACTSage 5.2. The results showed that the main components of slag were Al, Fe, Ca, P and Si; the minor components were Na, K, Mg, Cu, and Zn. The main chemical compound of slag was Ca4(Mg,Fe)5(PO4)6. For fly ash particles, heavy metals with the highest concentrations were in the order of Zn and As, Pb, Cu, and Cd, respectively. For non-heavy metals, Al, Fe and P were also found in significant amounts. The majority of deposited particles were composed of elements of Zn, P, S, Na, Fe, Al, Si, and Ca and such chemical compounds as Zn3(PO4)2, AlPO4, FePO4 and Fe(OH)3 while the minority consisted of elements of As, Cu, and Pb. Moreover, the compositions of deposited particles in each chamber differed due to different flue gas temperatures inside. In the secondary chamber at 760 degrees C, the amounts of Fe and Al were higher than Zn, whereas, in the other chambers (600-400 degrees C), the amount of Zn was higher. In other words, at the lower temperature the deposition of Zn was higher than the deposition of Fe and Al. In the water cooling section, volatile elements (i.e. Zn, As, Cu, Pb) were found in the highest concentrations due to a big difference in temperature between the wall surface and flue gas. From the simulation results, most of the elements in the gas phase were found to be chloride compounds, whereas those in the solid phase were in the form of oxide, sulfate, and phosphate compounds.  相似文献   

5.
The release of trace metals (Mn, Ni, Co, Cu, Zn, Pb, and Cd) and inorganic compounds (As) from initially anoxic Trepangier Bayou sediments, Louisiana and the sources of the released metals were investigated. After 1 to 2 d aeration, significant amounts of trace metals (Mn, Zn, Cd, Ni, and Co) were released to the aqueous phase with increased acidity, primarily due to the oxidation of acid-volatile sulfide and ferrous iron and iron sulfide minerals. The addition of a bacterial inhibitor, NaN,, to the Trepangier sediment during resuspension inhibited metal release, suggesting that microbial catalysis can regulate metal mobilization during sediment resuspension. In a well buffered system, oxidation of iron sulfides alone did not appear to induce trace metal release. Moreover, when Trepangier sediment was resuspended in anoxic conditions at neutral pH, <1% of the trace metal content was released, whereas a significant release of metal was observed under acidic anoxic conditions. Although oxidation of iron sulfide minerals is an essential prerequisite for the release of Zn, Co, Cd, and Ni, carbonates and oxides also play a role. The trace metals and inorganic compounds investigated could be classified into three groups according to their release characteristics: (i) Mn, Zn, Cd, Ni, and Co; (ii) Fe, Pb, and As; and (iii) Cu. The groupings appeared to depend on the sources of compounds and their relative affinity, after oxidation, to iron oxyhydroxides or organic matter.  相似文献   

6.
A number of agricultural and engineering uses for fixated flue gas desulfurization (FGD) material exist; however, the potential for leaching of hazardous elements has limited widespread application and the processes controlling the leaching of this material are poorly understood. In this study, a flow-through rotating-disk system was applied to elucidate the relative importance of bulk diffusion, pore diffusion, and surface chemical reaction in controlling the leaching of fixated FGD material under pH conditions ranging from 2.2 to 6.8. Changing the hydrodynamics in the rotating disk system did not affect the leaching kinetics at both pH 2.2 and 6.8, indicating that bulk diffusion was not the kinetic-limiting step. Application of the shrinking core model (SCM) to the data suggested a surface reaction-controlled mechanism, rather than a pore diffusion mechanism. The leaching of fixated FGD material increased with decreasing pH, suggesting it can be described by a combination of an intrinsic hydration reaction and a proton-promoted dissolution reaction. X-ray diffraction (XRD) and elemental composition analyses before and after leaching suggests that for most elements a number of solid phases controlled the leaching process.  相似文献   

7.
Transesterification of a mixture of vegetable oils with methanol using metal oxide catalysts derived from snail shell (SS) for biodiesel production was investigated. The metal oxides obtained from calcined snail shells in the temperature range of 650°–950 °C and modified by loading different potassium salts were used as a catalyst in the process. The catalysts were characterized by FT-IR, XRD, SEM-EDS, XPS and TGA. Catalytic activities of developed catalysts were also tested by Hammet indicator method and ion exchange method. The best calcination conditions were observed at 850°C for 4 hours based on biodiesel yield. The KF loaded snail shell gave highest biodiesel yield of 98 ± 1% in a batch reactor with highest basicity (15.9 mmoles/g) and basic strength measured by Hammet method. The optimized reaction conditions were: reaction temperature 65°C, reaction time 3 hours, methanol to oil molar ratio 9:1 and catalyst concentration 3wt%. Leaching and reusability tests confirm the stability of the catalyst as it encounters only 3% of leaching and small changes in catalytic activity up to five runs in terms of biodiesel yield.  相似文献   

8.
Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elements-including alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zinc-during sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios ((87)Sr/(86)Sr) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-(87)Sr/(86)Sr) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUB-water interaction.  相似文献   

9.
In this paper we investigate at laboratory scale the influence of the liquid/solid leaching conditions on the release of different chemical species from a reference porous material obtained by solidification of PbO and CdO with Portland cement. The pH influence on the dissolution of pollutants and the initial pore solution composition (target elements: Na(+), K(+), Ca(2+), Pb(2+), Cd(2+), SO(4)(2-)) were assessed by applying a methodology consisting of two equilibrium leaching tests, the Acid Neutralization Capacity (ANC) and the Pore Water (PW) tests and geochemical modelling. Samples of the same material were submitted in parallel to four different dynamic leaching tests in order to determine the influence of the sample shape (monolithic or granular) and eluate hydrodynamics (instantaneous L/S ratio, eluate renewal) on the leaching of the target elements. The comparison criteria were the eluate saturation state, the cumulative release and the released flux. Generally, the eluates obtained in the tests applied on granular material were more concentrated, even saturated for the eluate pH value with respect to Ca(2+), Pb(2+) and SO(4)(2-). The consequence of the eluate saturation is the slowing down effect on the dynamic release. The highest released flux was observed for the Monolith Leaching Test (MLT) involving the highest instantaneous L/S ratio and the lowest solid/liquid exchange surface and for which no saturation was observed, except Pb(2+) and SO(4)(2-) in some eluates. The maximum cumulative released-mass was obtained for the Column Leaching Test (CLT) applied on granular material having the highest exchange surface, the lowest instantaneous L/S and a continuous input flow of the leachant. The experimental results demonstrate the significance of the liquid/solid contact type which is also a scenario specific parameter.  相似文献   

10.
Resuspension is a multiphase phenomenon where suspended solids encounter water layers differing in physico-chemical properties that affect the reactions of phosphorus (P). The role of resuspended sediment as a sink or source of dissolved P was determined in a laboratory study of P desorption-sorption equilibria. Gradual mixing was simulated using decreasing solid concentrations and varying environmental conditions (pH, redox, ionic strength). To describe the P exchange when the particles encounter dissimilar water layers, the extent of P sorption to or desorption from solids was expressed as a function of P concentration in the bath solutions. The equilibrium phosphorus concentration (EPC), at which there is no net P release from or retention to the particles, proved to be a suitable parameter for assessment of P load risk. Under oxic conditions at pH 7, commonly prevailing in lakes, the EPC values ranged from 11 to 27 microg P L(-1). The larger the water volume the suspended material was mixed with, the higher the P concentration, allowing desorption to occur. As for chemical factors affecting P mobilization, EPC followed the order: pH 7 < pH 7 anoxic < pH 9. A separate extraction experiment revealed that elevated pH enhanced P mobilization more as the concentration of solids decresed. The results demonstrate that high pH (a common characteristic in eutrophic lakes during summer), when linked with intensive resuspension, may markedly increase the internal P loading risk. As for the risk assessment, the quantification of the internal P loading would be improved by isotherm studies combined with field observations.  相似文献   

11.
The aim of this study was to evaluate the possible toxicity of the leachate produced by the residues generated in the process of recycling lead from waste batteries. These residues are slag, which once formed, is characterised by its content in ferrous sulphide, sodium carbonate as well as residual coke from the process. It also contains, as minor components, lead and other heavy metals. The slag was stored and watered periodically over a period of 6 months, its composition changing until finally becoming inert, with no exothermal activity. The slag was leached, and its ecotoxicity was determined by means of the bioluminescence test, along with its content in heavy metals. The results obtained indicate a greater degree of toxicity in the residues with a shorter storage period than the established one, and which were therefore still in the phase of decomposition. However, in the samples taken on completing 6 months of storage, the EC50 value of the leachate was found to be higher than 3000 mg/l. Hence, a storage period under suitable environmental conditions which leads to inactivity of the residue as well as a decrease in its ecotoxicity, is considered absolutely essential. At the same time, a direct relationship was observed between the lead content and the ecotoxicity value.  相似文献   

12.
Reducing conditions in soils can have significant influences on the availability of nutrient and toxic metals, through their remobilization, their release through reductive dissolution of oxide phases, and from the formation of precipitates. In the literature, contrasting results are reported on the effects of temporary waterlogging conditions on the availability of metals. In the present study, changes in the "labile" or "potentially available" pool of copper (Cu) in soils as a consequence of up to three intermittent soil submergence cycles was investigated using isotopic dilution. The soils (an Oxisol and an Inceprisol) selected were amended in the field with both biosolids-Cu and salt-Cu. Intermittent soil submergence was found to have a significant effect on the lability of Cu in soils, with E(total) values generally increasing in all the treatments with the different submergence cycles, the highest lability of Cu observed in the Cu-salt treatment. The presence of nonexchangeable colloidal forms of Cu, influenced by treatments and submergence cycles, was also reported.  相似文献   

13.
An experimental investigation is performed to evaluate the performance of an integrated hotbox in a 1-kW solid oxide fuel cell (SOFC) system fed by natural gas. The integrated hotbox comprises all the main balance of plant components of an SOFC system, i.e. afterburner, reformer, and heat exchanger, and it not only reduces the physical size of the system but also yields improved system efficiency. The experimental results show that under optimal operating conditions, the combined H2 and CO content of the reformate gas is approximately 70%, while both anode and cathode in-gas temperatures are around approximately 750°C.  相似文献   

14.
Toxic cyanobacteria blooms are a growing concern for public health and safety, due in part to the production of the hepatotoxin microcystin by certain species, including Microcystis aeruginosa. Management strategies for controlling cyanobacteria blooms include algaecide treatments, often with copper sulfate, and more recently oxidizers such as sodium percarbonate that produce hydrogen peroxide. This study assessed the effects of two copper-containing algaecides and one sodium percarbonate-containing algaecide on mitigating cell numbers and toxin content of cultured M. aeruginosa and summer (July) bloom samples of Anabaenopsis sp. in a brackish stormwater detention pond. Monitoring of the bloom revealed that Anabaenopsis sp. was associated with elevated levels of orthophosphate compared to nitrogen (dissolved inorganic nitrogen to phosphorus ratios were 0.19–1.80), and the bloom decline (September–October) was likely due to lower autumn water temperatures combined with potential grazing by the dinoflagellate Protoperidinium quinquecorne. Laboratory-based algaecide experiments included three dose levels, and cyanobacteria cell numbers and microcystin concentrations (particulate and dissolved) were evaluated over 7 d. Following exposure, copper-containing treatments generally had lower cell numbers than either sodium percarbonate-containing or control (no algaecide) treatments. Addition of algaecides did not reduce overall microcystin levels, and a release of toxin from the particulate to dissolved phase was observed in most treatments. These findings indicate that algaecide applications may visibly control cyanobacteria bloom densities, but not necessarily toxin concentrations, and have implications for public health and safety.  相似文献   

15.
The sorption of aqueous lead on carbonate-hydroxyapatite (CHAp) is a complicated non-homogeneous solid/water reaction, which from the kinetic point of view has two stages. In the first stage, the reaction rate is so fast and the kinetic pathway so intricate that further research is required. In the second stage, the reaction rate slows down and the reaction process follows that of a first-order kinetic equation. Experimental results show that the relationship between the reaction rate constant k(1) and temperature T agrees with the Arrhenius equation, and that the activation energy of sorption (E(a)) is 11.93 kJ/mol and the frequency factor (A) is 2.51/s. The reaction rate constant k(1) increases with the Pb(2+) initial concentration and decreasing pH, but with increasing CHAp dosage. X-ray diffraction (XRD), scanning electron microscopy with energy dispersion spectrum (SEM-EDS) and toxicity characteristic leaching procedure (TCLP) tests indicate that the main sorption mechanism is dissolution-precipitation, in conjunction with surface sorption.  相似文献   

16.
The radiological impact of radionuclides released to the terrestrial environment is usually predicted with mathematical models in which the transfer of radionuclides from soil to the plant is described with the transfer factor (TF). This paper questions the validity of the protocols proposed by the International Atomic Energy Agency to measure TF in the field and in greenhouses conditions. We grew maize (Zea mays L.) both in the field after a surface application of radionuclides ((54)Mn, (57)Co, (65)Zn, and (134)Cs) and in a greenhouse with the same soil that has received the same fertilization and that had been previously sieved and homogeneously labeled with the same radionuclides before being repacked in pots. The analysis of the displacement of radionuclides in the field soil profile showed a higher concentration of the surface-applied radionuclides in the preferential flow path (PFP) in comparison to the soil matrix indicating that they infiltrated heterogeneously in the soil profile due to the structure-induced non-uniform water flow. A significantly higher recovery of (57)Co and (134)Cs was observed in the plants grown in the field soil, whereas no differences in the recovery of (54)Mn and (65)Zn between the two experiments were detected. These results suggest that (i) under field conditions the soil-to-plant transfer of radionuclides that co-exist as stable elements present at low concentrations in the soil and in the plant is higher than that measured under greenhouse conditions and (ii) the implicit assumption made when calculating the TF (that radionuclides are homogeneously distributed in the soil profile) is not valid, thereby preventing the calculation of an average concentration to obtain the TF parameter.  相似文献   

17.
The high-level radioactive, Al-rich, concentrated alkaline and saline waste fluids stored in underground tanks have accidentally leaked into the vadose zone at the Hanford Site in Washington State. In addition to dissolution, precipitation is likely to occur when these waste fluids contact the sediments. The objective of this study was to investigate the solid phase transformations caused by dissolution and precipitation in the sediments treated with solutions similar to the waste fluids. Batch experiments at 323 K were conducted in metal- and glass-free systems under CO2 and O2 free conditions. Results from X-ray diffraction (XRD), quantitative X-ray diffraction (QXRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and energy dispersive X-ray fluorescence spectroscopy (EDXRF) indicated that significant solid phase transformations occurred in the sediments contacted with Al-rich, hyperalkaline, and saline solutions. The XRD and QXRD analyses confirmed that smectite and most likely biotite underwent dissolution. The SEM and the qualitative EDS analyses confirmed the formation of alumino-silicates in the groups of cancrinite and probably sodalite. The morphology of the alumino-silicates secondary phases changed in response to changes in the Si/Al aqueous molar ratio. The transformations in the sediments triggered by dissolution (weathering of soil minerals) and precipitation (formation of secondary phases with high specific surface area and probably high sorption capacities) may play a significant role in the immobilization and ultimate fate of radionuclides and contaminants such as Cs, Sr, and U in the Hanford vadose zone.  相似文献   

18.
Dairy manure application to soils can result in phosphorus (P)-related degradation of water quality. The P in these manure-impacted soils can be labile even years after abandonment and under conditions normally associated with high P stability. Failure of P to stabilize with time compounds the environmental consequences of dairy manure disposal, especially on sandy soils. The objectives of this study were to compare chemical characteristics of active and abandoned dairy manure-impacted soils and minimally impacted soils and to assess the continuous release of P in relation to sparingly soluble salts using repeated water extractions, X-ray diffraction, and speciation modeling of column leachates. Soil samples from Ap horizons were collected from nine highly manure-impacted (total P > 1000 mg P kg(-1) soil) areas on four active and five abandoned dairies and four minimally impacted soils (total P < 200 mg P kg(-1) soil). Soil extracts were analyzed for electrical conductivity (EC), soluble reactive phosphorus (SRP), Ca, Mg, Na, and K. The EC of the soil solutions decreased as active dairy > abandoned dairy > minimally impacted soils. Release of Mg and SRP were significantly correlated (r2 = 0.68) and did not decline after abandonment; Ca release was not correlated with SRP (r2 = 0.01), and declined significantly (p < 0.05) after abandonment. Speciation data from column leachates suggested that Mg-P phases and/or the most soluble Ca-P phases could control P solution activities. An implication of this study is that P stabilization via crystallization of calcium phosphates (even at near-neutral pH) may be preempted by Mg-P association. Thus, mechanisms to minimize P release may require P-retaining soil amendments or management of animal rations to eliminate Mg-P formation.  相似文献   

19.
Substantial amounts of self-boiling, Al-rich, hyperalkaline, and saline high-level waste fluids (HLWF) were deposited to the vadose zone at the Hanford Site, in Washington State. The objective of this study was to investigate the effects of similar fluids on the extent of dissolution and precipitation in the sediments. Metal- and glass-free systems were used to conduct batch experiments at 323 K under CO2 and O2 free conditions. Base-induced dissolution of the soil minerals was rapid in the first 48 h as indicated by immediate releases of Si and Fe into the soil solution. Potassium release lagged behind and dissolution of K-bearing minerals (mica and K-feldspar) proceeded faster only after 2 to 3 d of the experiment. Silicon and Fe release exhibited high dependence on aqueous [Al] (rate orders <-1), because Al decreased free OH concentration in the contact solution and probably inhibited soil mineral dissolution. Initial K release exhibited low dependence on [Al] (fractional rate orders). Initial dissolution rates calculated based on Si release varied with aqueous [Al] from 29.47 to 4.35 x 10(-12) mol m(-2) s(-1). Aluminum participated in the formation of the secondary phases (precipitation rates of 10(-8) mol s(-1)) but the overall precipitation rate of alumino-silicate secondary phases was probably controlled by aqueous [Si] (rates of 10(-9), and rate constants between 0.0054 and 0.0084 h(-1)). The changes in the soil solution chemistry (release of K, Si, Fe, and other elements) may play a significant role in the fate of radionuclides and contaminants like Cs, Sr, Cr, and U in the Hanford sediments.  相似文献   

20.
This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. The trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e.,>10 yr after construction).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号