首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
选取北京、石家庄和唐山作为京津冀区域典型城市,基于实地样品采集和组分分析结果,探讨PM2.5组分中二次无机水溶性离子(SNA)浓度变化特征,并利用空气质量模型模拟结果分析重污染前后京津冀地区各类污染源大气污染物排放对PM2.5和SNA质量浓度的贡献.结果显示:3个城市PM2.5质量浓度整体呈现逐年下降的趋势,多数情况下SO42-、NO3-和NH4+浓度极大值同时出现在冬季,PM2.5化学组分较为稳定.相对于常规时段,重污染期间SO42-、NO3-和NH4+质量浓度明显增加,重污染前一天SNA浓度占PM2.5比值达到最高.重污染的形成是本地源排放和外来区域传输共同作用的结果,外来源对NO3-的贡献整体高于SO42-和NH4+.交通源、居民源和工业源对PM2.5、SO42-和NO3-浓度贡献最高,NH4+主要来自居民源的排放.  相似文献   

2.
通过实时在线监测了2018年11月27日~2019年1月15日北京市城区PM2.5、水溶性无机离子(Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、NO2-、NO3-、SO42-、PO43-)、碳质组分(有机碳OC、元素碳EC)的质量浓度以及气态污染物浓度和气象要素,收集整理了近20年北京市冬季PM2.5、主要离子组分以及碳质组分浓度,分析研究了1999~2018年北京市冬季PM2.5、离子、碳质组分的变化特征,重点探讨了监测期间清洁日与两个典型重污染事件PM2.5及其组分的演变特征.结果表明:研究期间PM2.5浓度为53.5μg/m3,达到近20年北京市冬季较低值,且大气主要污染源由煤烟型污染源转变为燃煤型与机动车尾气复合型污染源.监测期间,湿度高、微弱的西南风导致重污染产生,清洁日、污染事件I与污染事件II PM2.5平均浓度分别为32.5,138.9,146.8μg/m3且不同时段PM2.5日变化趋势存在差异.各离子浓度变化为:NO3- > NH4+ > SO42- > Cl- > K+ > Ca2+ > Na+ > PO43- > F- > NO2-~Mg2+,总水溶性离子浓度为24.6μg/m3占PM2.5总浓度的46.0%,其中SNA浓度占总离子浓度的83.7%,是离子中最主要的组分.碳质组分浓度达到近二十年北京市冬季最低值,变化为:一次有机碳POC > EC > 二次有机碳SOC,OC与EC相关系数达到0.99,一次燃烧源对污染过程有较大贡献.NH4+在清洁日与污染II中富集,主要以(NH42SO4、NH4NO3和NH4Cl形式存在,在污染I中较少,仅以(NH42SO4和NH4NO3存在.在污染I和II期间,SO42-的形成昼夜均受相对湿度与NH3影响;NO3-的形成白天受O3与NH3的影响,夜间受相对湿度和NH3的影响.  相似文献   

3.
NH3在空气中主要转化为NH4+,NH4+和SO42-、NO3-和Cl-等酸根离子反应生成的二次气溶胶,是环境空气中PM2.5的重要组成成分。为探索上海西南区域环境空气中氨的污染特征、来源和对PM2.5排放的影响,该研究选择城市居住区站点A和农村居住区站点B利用差分吸收光谱法(DOAS法)氨监测仪进行为期1 a(2018年3月-2019年2月)的NH3监测,并在站点A同步进行PM2.5的测定。结果表明:上海西南区域中大气NH3日均浓度为6.5μg/m3,1 h平均浓度范围0.4~76.0μg/m3;NH3浓度夏季>秋季>春季>冬季;NH3日变化浓度呈现单峰特...  相似文献   

4.
北京冬季一次重污染过程的污染特征及成因分析   总被引:9,自引:0,他引:9  
为了研究北京冬季重污染过程的污染特征及形成原因,选取2013年1月9~15日一次典型重污染过程,对污染期间气象要素、大气颗粒物组分特征和天气背景场进行综合研究.结果表明,此次大气重污染过程中PM10和PM2.5平均质量浓度分别为347.7μg/m3和222.4μg/m3,均超过环境空气质量标准(GB3095-2012)中规定的日均二级浓度限值.重污染时段PM2.5中NH4+、NO3-和SO42-质量浓度之和占PM2.5质量浓度的44.0%,OC/EC的平均比值为5.44,说明二次无机离子和有机物对此次污染过程中PM2.5贡献较大.稳定的大气环流背景场、高湿度低风速的地面气象条件和低而厚的逆温层导致北京地区大气层结稳定,加上北京三面环山的特殊地形结构,是造成此次大气重污染过程的主要原因.  相似文献   

5.
为研究邢台市秋季PM2.5污染特征,于2017年10月15日~11月14日在邢台市区对PM2.5样品进行了采集,并对其中水溶性离子(包括Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示,观测期间邢台市ρ(PM2.5)平均值为(130.0±74.9)μg/m3,其中水溶性离子质量浓度为(69.8±11.4)μg/m3,占ρ(PM2.5)的53.3%,NO3-、SO42-和NH4+为主要离子,占水溶性离子比例达到了89.7%. 当污染加重,水溶性离子质量浓度随ρ(PM2.5)增大而升高,且NO3-、NH4+及SO42-占比亦逐渐升高,但其他离子占比随之下降,Ca2+尤为明显,表明ρ(PM2.5)升高时主要受二次无机转化影响;观测期间SOR(硫转化率)与NOR(氮转化率)的平均值分别为0.36和0.25,表明秋季SO2与NO2转化速率较强,二次无机污染严重,另外SOR及NOR与温度及相对湿度呈正相关,且SOR对二者更为敏感;邢台市秋季PM2.5呈弱碱性,NH4+主要以(NH42SO4和NH4NO3的形式存在;ρ(NO3-)/ρ(SO42-)平均值为2.13,表明移动源对秋季大气颗粒物的来源贡献较大;PMF分析结果表明,二次转化源、燃烧源及扬尘源为邢台市秋季PM2.5中水溶性离子的主要来源.  相似文献   

6.
马莹  吴兑  刘建 《中国环境科学》2016,36(10):2890-2895
利用广州番禺大气成分站2012春节期间的逐时Marga数据、PM数据分析珠三角地区春节期间颗粒物及其水溶性离子的变化特征.研究发现在烟花爆竹集中燃放时期,PM10、PM2.5和各种水溶性离子浓度急剧升高,PM2.5/PM10的值与PM的变化趋势相反,说明主要增加的是PM10中相对较粗的粒子;PM2.5/PM10平均值是0.92,说明在该期间,仍然主要是细粒子污染;K+、Cl-和Mg2+以及NO3-和SO42-、NH4+浓度不同程度上升,说明烟花爆竹燃放对它们都存在影响,其中烟花爆竹燃放对PM、K+、Cl-和SO42-的影响最大,对NO3-、NH4+也存在一定程度的影响.通过各离子之间的变化趋势以及相关系数研究,发现K+、Cl-、Mg2+和Na+主要来源于烟花爆竹的燃放,因此在烟花爆竹集中燃放时段浓度急剧升高,SO42-、NO3-和NH4+相关系数很高,说明他们三者可能有相同的来源;黑碳浓度明显升高说明烟花爆竹的燃放对其也有一定的影响.  相似文献   

7.
氨减排会对周边大气PM2.5污染改善带来潜在的溢出效益,但尚缺乏对其规律的探究.利用WRF-CAMx-PSAT模型模拟量化了典型城市(邢台)NH3减排对周边地区大气PM2.5浓度降低的溢出效益,探究了其在不同季节与不同NH3减排比例下、对PM2.5及其二次无机化学组分随距离变化的响应规律.结果表明:(1)NH3减排在不同减排比例下对周边城市的PM2.5及其二次组分均存在溢出效益,其效益随周边受体城市与减排城市相对距离的增加呈显著的指数下降的趋势;(2)在1月的溢出效益远高于7月,1月在不同减排比例下京津冀PM2.5浓度下降值约为7月的7.4倍;(3)各组分溢出范围随着减排比例的增加不断扩大,NH4+和SO42-的溢出最远距离呈指数趋势上升,NO3-的溢出最远距离呈线性趋势上升;(4)...  相似文献   

8.
为研究富氨地区秋冬季不同PM2.5污染级别气溶胶酸性及其影响因素, 于2018年10月15日~2019年2月28日, 选择郑州市2个非城区点位——新密和航空港进行PM2.5膜样本采集, 采用离子色谱法测定其水溶性离子, 通过ISORROPIA-Ⅱ模型计算气溶胶pH值, 并分不同污染等级探讨PM2.5主要离子浓度和pH值范围.结果显示: 采样期间NO3-、NH4+和SO42-是3种最主要的离子, 随着污染程度的加剧, NO3-、SO42-、NH4+呈现上升趋势, 其中NO3-和NH4+的增长速度较大; NH4+/SO42-的比值大于0.75, 大气处于富氨条件, NH4+主要存在形式是(NH4)2SO4、NH4NO3、NH4Cl; 所选两点位PM2.5的pH值呈中等酸性, 新密4.6±0.6、航空港4.6±0.7, 随着污染的加剧, pH值的变化范围逐渐收窄; 敏感性分析表明影响秋冬PM2.5的pH值变化的主要共同驱动因素是TNH3(总氨(气体+气溶胶))、SO42-和温度, 随着污染的加剧, 由TNH3对气溶胶酸度的影响最大变为SO42-对酸性的影响最大; 随着pH值增大, 总硝酸倾向于向颗粒态移动, 总氨倾向于向气态移动, 呈相反变化.  相似文献   

9.
2013~2014年北京大气重污染特征研究   总被引:30,自引:0,他引:30  
从污染物浓度的时间变化、空间分布以及大气污染类型等方面,对2013~2014年北京大气重污染过程进行了分析,并初步探讨其影响因素.结果表明:2013~2014年北京共出现大气重污染105d,重污染频率为14.4%.其中,首要污染物为PM2.5的天数为103d,首要污染物为PM10和O3各有1d;冬半年重污染天数占全年的76.2%.重污染气象要素特征主要表现为风速小、湿度高、能见度低.重污染日PM2.5/PM10浓度比值为91.3%,明显高于全年平均水平,表明重污染时颗粒物以细颗粒物为主.北京大气重污染区域分布表现为南高北低,平原高、山区低的总体特征,交通站重污染天数普遍高于市区其它站点.北京大气重污染主要表现为积累型、光化学型、沙尘型以及复合型等类别;其中积累型大气重污染往往伴有区域污染水平的整体升高,PM2.5组分中NO3-、SO42-、NH4+等水溶性二次离子的浓度增幅最为明显;O3污染在近两年有加重的趋势.  相似文献   

10.
利用高时间分辨率MARGA于2017年2月17日~3月24日在桂林市开展PM2.5组分监测,结合同一点位环境和气象监测数据,分析桂林市大气PM2.5水溶性无机离子组分特征及气溶胶酸性.结果表明:MARGA监测的PM2.5中8种水溶性离子与PM2.5变化趋势一致.8种水溶性离子总浓度均值29.27μg/m3,3种二次水溶性离子SO42-、NO3-和NH4+浓度均值26.91μg/m3,占水溶性离子总浓度的93.50%,是桂林市大气PM2.5的主要组分.二次水溶性离子SO42-、NH4+和NO3-两两之间存在显著正相关性(相关系数均>0.80),提示二次离子产生的机制及在大气中的演化、沉积具有一定的相似性.无论有无降雨,能见度(Vis)均随着水溶性离子,尤其是二次水溶性离子浓度的增加呈幂函数规律递减.24h累计降雨量≥ 10.0mm时,湿清除作用明显.晴天及降雨量不大的天气下,需注意管控机动车尾气、生物质燃烧和扬尘污染.SOR、NOR分别为0.35、0.12,SO2同时通过均相和非均相氧化反应转化为SO42-,NOx主要是通过白天光化学反应转化为NO3-.大多数离子和气态前体物均存在明显的日变化规律,这与物质的来源、形成机制和气象条件不同有关.CE/AE摩尔浓度均值为1.5,桂林市PM2.5总体偏碱性.PM2.5中SO42-、NO3-、Cl-主要以(NH42SO4、NH4NO3和NH4Cl形式存在.PM2.5中NH4+可能与监测点位交通源排放有关,桂林市应加强交通污染物排放管控.  相似文献   

11.
2018年11月23日-12月4日,京津冀及周边地区"2+26"城市出现了一次长时间、大范围、高强度的复合型大气重污染过程,为揭示区域性重污染过程中多因素的综合作用,利用气象资料、空气质量监测等多源数据以及区域污染特征雷达图,对京津冀及周边地区"2+26"城市此次重污染特征和成因进行分析.结果表明:根据PM2.5/PM10[ρ(PM2.5)/ρ(PM10),下同]可将此次重污染过程划分为4个阶段.第一阶段(2018年11月23-26日)PM2.5/PM10在0.5~1.0内波动,"2+26"城市大气扩散条件转差,一次污染物局地积累及SO2、NOx、NH3等气态污染物在高湿条件下二次转化是污染形成并发展的主要原因;第二阶段(11月27日)PM2.5/PM10突降至0.2左右,"2+26"城市北部受形成于蒙古国的沙尘影响,短时ρ(PM10)快速升高(峰值为818 μg/m3),中南部受形成于内蒙古自治区阿拉善盟的沙尘及上风向PM2.5污染的传输影响,ρ(PM2.5)和ρ(PM10)均较高,维持日均重度污染水平(参照GB 3095-2012《环境空气质量标准》和HJ 633-2012《环境空气质量指数(AQI)技术规定(试行)》);第三阶段(11月28日-12月2日)PM2.5/PM10由0.3逐渐升至0.8,在静稳、高湿的不利气象条件下,一次污染物积累并二次转化,第二阶段残留沙尘中的矿物质对硫酸盐起到催化作用,导致ρ(PM2.5)快速上升,"2+26"城市大部分达日均重度及以上污染;第四阶段(12月3-4日)与第二阶段类似,PM2.5/PM10突降至0.2,"2+26"城市再次受到沙尘天气和区域传输的共同影响,因冷空气持续时间较长,污染被有效清除.研究显示,此次污染过程是气象条件、污染物一次排放和二次转化、区域传输、沙尘天气等多因素综合作用的结果.当静稳、高湿等不利气象条件或沙尘天气出现时,区域应加强对各类污染物排放的管控力度,以降低污染物的一次排放、二次转化以及沙尘和区域传输的共同影响,进而削弱污染严重程度.   相似文献   

12.
为揭示邯郸市空气污染过程及形成原因,以邯郸市环境监测中心为采样点,对采样滤膜进行离子和碳质组分测试,探讨PM2.5组分浓度变化特征,并利用WRF-CAMx空气质量模型模拟分析2017~2018年秋冬季3次重污染前后邯郸市各个地区各类污染源大气污染排放对PM2.5质量浓度的贡献.结果显示,重污染期间邯郸市水溶性粒子占PM2.5质量浓度的62.4%,二次离子中呈现NO3- > SO42- > NH4+变化趋势.受地面均压场和高压底部控制及500hPa高空纬向环流影响,污染物水平方向和垂直方向传输受到抑制,同时边界层高度的降低进一步加剧PM2.5污染浓度的升高,随着西伯利亚东部高压和欧亚大陆高压南下以及边界层高度的上升,3次重污染过程得以彻底清除.PSAT示踪模块结果表明复兴区,丛台区和永年区是邯郸市PM2.5浓度贡献的主要区县,3个区县重污染贡献总和为66.8%~72.2%,重污染时段冶金,交通源和居民散煤燃烧是3大主要污染源.  相似文献   

13.
为研究南京夏季大气复合污染的特征,2016年8月15日~9月15日期间开展了强化观测实验,本文利用仙林、鼓楼80m楼顶2个站点的强化观测资料,结合草场门常规监测资料,统计分析了南京不同地区夏季O3和颗粒物(PM2.5、PM10)的浓度特征和相关性,以及郊区水溶性离子与其气态前体物的转化率变化特征.研究表明:3个站点O3平均小时浓度为100.3μg/m3.PM2.5和PM10浓度分别为41.1和67.8μg/m3,郊区夜间存在颗粒物浓度高值.SO42-、NO3-、NH4+浓度总和占PM2.5浓度的比值达到61%,OC(有机碳)/EC(元素碳)比值范围为0.8~4.0,日均值超过2.0的天数占77%,城、郊均存在二次污染.白天O3与颗粒物(PM2.5)浓度呈显著正相关变化,硫转化率(SOR)、氮转化率(NOR)分别与O3浓度、湿度显著正相关.HONO主要在夜间积累,HCl和HNO3浓度峰值出现在下午.与其它无机盐相比,NH4+在总氨中所占比例明显偏低,大气中的氨主要以气态NH3存在.观测期间O3污染较重,O3与颗粒物的正相关关系显著,化学反应在颗粒物积累过程中具有重要贡献,此外还可能存在城区向郊区的污染输送.  相似文献   

14.
京津冀及周边地区“2+26”城市为京津冀大气污染传输通道城市,也是我国空气污染最严重的区域之一.针对京津冀及周边地区“2+26”城市,利用中国环境监测总站公布的PM2.5、PM10、SO2、NO2、O3和CO数据,对2013—2019年京津冀及周边地区“2+26”城市大气污染特征进行分析,并探讨影响其空气质量变化的因素.研究表明:①2013—2019年京津冀及周边地区“2+26”城市空气质量总体向好,2019年ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(CO)和ρ(NO2)比2013年分别下降了50%、41%、79%、49%和20%,ρ(O3-8 h-90per)(臭氧日最大8 h平均值第90百分位数)比2013年升高了21%.②2013—2019年京津冀及周边地区“2+26”城市重污染天数持续减少,2019年比2013年下降67%,严重污染天数下降尤为明显,降幅达90%.优良天数比例虽然增加,但2016年以后基本稳定在50%左右,没有持续增加的趋势.③ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的最大值均出现在1月,ρ(O3-8 h)(臭氧日最大8 h平均值)的最大值出现在6月.ρ(PM2.5)越高,PM2.5/PM10和SO2/NO2越大,表明二次污染源和燃煤源的贡献越大.④就空间分布而言,ρ(PM2.5)和ρ(PM10)高值区主要集中在区域中南部太行山脉山前的平原地区,低值区主要集中在区域北部.⑤地理位置、气象条件、产业结构、能耗消耗以及减排政策是影响2013—2019年京津冀及周边地区“2+26”城市空气质量变化的重要因素.研究显示,随着大气污染防治减排措施实施的力度逐渐加大,政策影响已成为京津冀及周边地区“2+26”城市空气质量持续改善的最重要手段.   相似文献   

15.
为探究临沂市冬季环境空气PM2.5中水溶性离子污染特征及来源,于2016年12月11日—2017年1月9日在临沂大学、兰山区政府、高新区翠湖嘉园、汤庄办事处、河东区政府、临沂开发区6个采样点开展样品采集.结果表明:①采样期间全市ρ(PM2.5)日均值的平均值为144.86 μg/m3,ρ(PM2.5)日均值在2016年12月20日和2017年1月4日出现峰值,分别为304.46和341.65 μg/m3.②水溶性离子日均质量浓度大小顺序依次为ρ(NO3-)> ρ(SO42-)> ρ(NH4+)> ρ(Cl-)> ρ(K+)> ρ(Ca2+)> ρ(Na+)> ρ(F-)> ρ(Mg2+)> ρ(NO2-),其中,在PM2.5中w(NO3-)、w(SO42-)、w(NH4+)分别为22.33%、16.57%、13.62%,说明NO3-、SO42-和NH4+是临沂市PM2.5的主要组成部分.③临沂市污染天和非污染天ρ(PM2.5)日均值分别为164.00和56.86 μg/m3.随污染水平增加,PM2.5中w(NO3-)明显增高,w(SO42-)和w(NH4+)基本不变,说明w(NO3-)的增加导致ρ(PM2.5)的升高.污染天和非污染天的NOR(氮氧化率)分别为0.28和0.11,SOR(硫氧化率)分别为0.34和0.28,说明污染越重,NOR和SOR越高,并且NOx的气-粒转化速率较SO2慢.污染天ρ(Cl-)和ρ(K+)分别为7.22和1.77 μg/m3,分别是非污染天的2.5和3.0倍.④采样期间非污染天和污染天的N/S〔ρ(NO3-)/ρ(SO42-)〕分别为0.85和1.39,说明非污染天时固定源对PM2.5的贡献相对较大,而污染天时移动源对PM2.5的贡献相对较大.⑤通过PMF模型法解析出3个因子.因子1对PM2.5中水溶性离子的贡献率为56.13%,代表二次源和生物质燃烧源;因子2的贡献率为25.22%,代表工业源和垃圾焚烧源;因子3的贡献率为18.65%,代表扬尘源.研究显示,临沂市冬季PM2.5污染严重,水溶性离子来源复杂,应采取多源控制的污染防治对策.   相似文献   

16.
为了解冬季不同污染等级下NH3和AWC(Aerosol Water Content,气溶胶液态水含量)对PM2.5中水溶性二次离子形成的影响,对保定市冬季颗粒物浓度、二次离子及前体物(SO2、NO2、NH3)浓度进行了分析,并利用ISORROPIA-Ⅱ计算了PM2.5中的AWC和pH.结果表明:①2017-2018年冬季保定市重污染期(AQI>200)ρ(PM2.5)、ρ(SO2)、ρ(NO2)和ρ(NH3)较优良期(AQI < 100)分别升高了3.0、1.1、1.3和0.8倍,气态前体物的二次转化是污染形成的重要原因之一.重污染期ρ(NH4+)、ρ(SO42-)、ρ(NO3-)较冬季平均值分别升高了1.2、0.9、1.3倍,其中ρ(NO3-)升幅最大,其次为ρ(NH4+).②保定市大气中过剩NH3指数为0.1 μmol/m3,采样期间为富氨环境,NO3-的生成主要受HNO3限制.③重污染期PM2.5中AWC高达93.6 μg/m3,是优良期的20.6倍,观测期间保定市SO42-的二次生成以颗粒物表面液相氧化为主,即SO2被NO2和NH3氧化,NO3-的二次生成包括NH3参与的非均相转化和N2O5的非均相水解过程.④整体而言,pH变化的敏感性表现为TA(总氨)浓度> TS(总硫)浓度> TN(总氮)浓度≈TA+TS+TN浓度(同时改变相同比例的总氨、总硫、总氮浓度),随污染等级的升高,pH对TS、TA浓度变化的敏感性减弱,对TN浓度变化的敏感性增强;单独改变TS、TN、TA浓度时AWC敏感性弱,同时改变TS、TN、TA浓度时AWC敏感性较强,AWC变化与二次离子浓度密切相关.研究显示,保定市冬季污染期SNA的形成以液态水参与的液相氧化为主,NH3可以维持颗粒物的高pH,保持氧化过程.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号