首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The potential generation of cyanide species in wastewater upon chlorination in the presence of residual ammonia (resulting in chloramine formation) was investigated in experiments with synthetic solutions and publicly owned treatment works (POTW) secondary effluent. This study demonstrated that low concentrations (approximately 5 to 25 microg/L as cyanide) of cyanogen chloride (CNCI), a highly toxic cyanide species not measured in total or free cyanide analyses, could be detected as a result of chloramination reactions in POTW secondary effluent. The potential for chloramination of nitrogen-bearing organic compounds to yield CNCl and/or free cyanide was demonstrated in experiments with synthetic solutions spiked with selected precursor organics: L-serine, benzene, catechin, and humic acid. The amino acid L-serine yielded the largest concentrations of CNCI upon chloramination. Additionally, detectable cyanide (approximately 10 microg/L) was observed in solutions of L-serine and in POTW secondary effluent that was chloraminated followed by dechlorination to prevent destruction of any free cyanide produced. Thus, chlorination of POTW secondary effluent containing residual ammonia can lead to chloramination of organic compounds and the resulting production of CNCl and free cyanide.  相似文献   

2.
Cyanide has been detected in effluent of some publicly owned treatment works (POTWs) at levels exceeding influent concentration. Thiocyanate (SCN-) is a cyanide-related compound encountered in most POTW influents and may be decomposed to free cyanide (CN-) under some circumstances. Effects of SCN- on the formation of cyanide during chlorination and UV disinfection were studied through a laboratory study with synthetic solutions and POTW secondary effluent. Results indicated that CN- was detected in SCN- solutions after chlorination in which the chlorine dose or reaction time was not sufficient to destroy SCN-completely, thus ensuring no residual chlorine to destroy any CN-produced. It was also found that SCN can be broken down to yield cyanide by UV irradiation. In addition, SCN- was observed to cause significant positive error in the conventional total cyanide analysis technique involving acidic distillation and colorimetric measurement when nitrate was present in the sample.  相似文献   

3.

Purpose  

Dechlorination with tetravalent sulfur is widely used in wastewater treatment processes after chlorination. Dechlorination can remove certain genotoxic disinfection by-products (DBPs). However, the reactions occurring during dechlorination of chlorinated secondary effluent and their genotoxic chemicals are still very complex, and the related genotoxicity changes remain unknown. Therefore, the effects of dechlorination on genotoxicity in secondary effluent and its fractions and typical genotoxic chemical after chlorination were evaluated.  相似文献   

4.
Ren S 《Chemosphere》2008,71(3):589-600
A US patent was issued to a commercial dishwashing detergent composition in which soluble zinc serves as an anti-corrosion agent. Since the detergents are used in a down-the-drain fashion, some of the detergents are discharged as wastewater and treated in publicly owned treatment works (POTWs). A risk assessment was previously conducted which focused on the nitrification processes in US POTWs. As a conservative pollutant, zinc removed from wastewater during treatment is transferred to sludges and at sufficiently high concentrations may inhibit the sludge treatment processes. In the present assessment, a probabilistic risk assessment was conducted to quantitatively determine the risk of zinc in the detergents to the anaerobic digestion processes in US POTWs. The procedure for POTW local limit development designed by the US Environmental Protection Agency (EPA) was used as a reference when conducting the risk assessment. The assessment took into account the background zinc concentrations in POTW influents and was conducted at different market penetration rates (MPRs) for the US market of detergents based on the patented formula. Several factors were present that contributed to the conservativeness of the assessment. Results indicate that zinc in detergents does not present a significant risk to the anaerobic digestion processes in POTWs at a MPR up to 10%, with a probability of anaerobic digestion inhibition of below 1%.  相似文献   

5.
Cyanide has been detected in the effluents of some publicly owned treatment works (POTWs) at levels exceeding the influent concentration. The presence of nitrite ion (NO2-) as a common constituent in domestic wastewater effluents may play an important role in the formation of cyanide through reaction with certain kinds of organic compounds, especially aromatic compounds. Laboratory studies with seven organic compounds (aniline. p-toluidine, phenol, 1,2,4-trihydroxybenzene, L-serine, glycine, and benzoic acid) revealed that cyanide can be formed by reaction of nitrite with some of these compounds. The most substantial free cyanide (HCN. CN-) production observed at 25 degrees C was 0.15 mg/L from reaction of 0.01 mM 1.2.4-trihydroxybenze with 5 mg/L nitrite for 72 hours. Substantial free cyanide formation was also observed at pH 2-4 in experiments with POTW effluents when reactive organics and nitrite were both added to wastewater. Formation of cyanide through nitrosation was strongly pH dependent, being most significant at low pH (2 to 4) and negligible at neutral-to-high pH. This result points to nitrous acid (HNO2) as being more reactive than the dissociated NO2- ion. The reaction of these nitrite species with organics also occurs in conventional analyses for total cyanide which involve distillation under strongly acidic conditions. Sufficient sample pretreatment with sulfamic acid at the time of sampling, not at the time of analysis. is highly recommended to prevent biasing analytical measurement of total cyanide in POTW effluents.  相似文献   

6.
Many publicly owned treatment works in North America are exceeding permitted limits for total cyanide in their wastewater treatment effluents. A recently introduced rapid, segmented, flow-injection analysis procedure using UV digestion and amperometric detection of the membrane-separated cyanide was used to investigate the various scenarios by which elevated cyanide levels might be present in wastewater treatment plant effluent. A number of significant interferences can produce false positive bias during sample analysis with the traditional acid distillation technique, but are minimized or absent with the new analytical method. However, increased levels of cyanide were found in some chlorinated wastewaters compared to the levels before chlorination, suggesting a fast reaction mechanism associated with the disinfectant and some precursor in the wastewater. In particular, the contact of chlorine with nitrite in the presence of a carbon precursor appears to contribute to cyanide formation during wastewater treatment and sample handling. This paper explores the scenarios under which cyanide can form during wastewater treatment as well as those in which a false bias for total cyanide can be obtained during sample processing and provides guidance for appropriate sample handling, screening, and processing to ensure valid analytical results.  相似文献   

7.
Wastewater disinfection is practiced with the goal of reducing risks of human exposure to pathogenic microorganisms. In most circumstances, the efficacy of a wastewater disinfection process is regulated and monitored based on measurements of the responses of indicator bacteria. However, inactivation of indicator bacteria does not guarantee an acceptable degree of inactivation among other waterborne microorganisms (e.g., microbial pathogens). Undisinfected effluent samples from several municipal wastewater treatment facilities were collected for analysis. Facilities were selected to provide a broad spectrum of effluent quality, particularly as related to nitrogenous compounds. Samples were subjected to bench-scale chlorination and dechlorination and UV irradiation under conditions that allowed compliance with relevant discharge regulations and such that disinfectant exposures could be accurately quantified. Disinfected samples were subjected to a battery of assays to assess the immediate and long-term effects of wastewater disinfection on waterborne bacteria and viruses. In general, (viable) bacterial populations showed an immediate decline as a result of disinfectant exposure; however, incubation of disinfected samples under conditions that were designed to mimic the conditions in a receiving stream resulted in substantial recovery of the total bacterial community. The bacterial groups that are commonly used as indicators do not provide an accurate representation of the response of the bacterial community to disinfectant exposure and subsequent recovery in the environment. UV irradiation and chlorination/dechlorination both accomplished measurable inactivation of indigenous phage; however, the extent of inactivation was fairly modest under the conditions of disinfection used in this study. UV irradiation was consistently more effective as a virucide than chlorination/dechlorination under the conditions of application, based on measurements of virus (phage) diversity and concentration. Taken together, and when considered in conjunction with previously published research, the results of these experiments illustrate several important limitations of common disinfection processes as applied in the treatment of municipal wastewaters. In general, it is not clear that conventional disinfection processes, as commonly implemented, are effective for control of the risks of disease transmission, particularly those associated with viral pathogens. Microbial quality in receiving streams may not be substantially improved by the application of these disinfection processes; under some circumstances, an argument can be made that disinfection may actually yield a decrease in effluent and receiving water quality. Decisions regarding the need for effluent disinfection must account for site-specific characteristics, but it is not clear that disinfection of municipal wastewater effluents is necessary or beneficial for all facilities. When direct human contact or ingestion of municipal wastewater effluents is likely, disinfection may be necessary. Under these circumstances, UV irradiation appears to be superior to chlorination in terms of microbial quality and chemistry and toxicology. This advantage is particularly evident in effluents that contain appreciable quantities of ammonia-nitrogen or organic nitrogen.  相似文献   

8.
Ren S 《Chemosphere》2007,68(8):1474-1488
A US patent was issued to a commercial dishwashing detergent composition in which soluble zinc is used to protect glassware from corrosion. Some of the consumed detergents are discharged as wastewater and treated in publicly owned treatment works (POTWs). A probabilistic risk assessment was conducted to quantitatively determine the risk of zinc in the detergents to the nitrification processes in US POTWs. The procedure for POTW local limit development designed by the US Environmental Protection Agency (EPA) was used as a reference when conducting the risk assessment. The assessment took into account the background zinc concentrations in POTW influents and potential shock loading patterns, and was conducted at different market penetration rates (MPRs) for the US market of detergents based on the patented formula. The assessment involved several conservative factors including conservative determination of primary treatment efficiency, bioavailability, inhibition concentration, configuration of the nitrification process, as well as background zinc concentration in wastewater. With the conservative factors in the assessment, it was found that zinc in detergents does not present a significant risk to the nitrification processes in POTWs at a MPR up to 10%. It was noted that additional analyses would be required when the MPR is higher than 10% to adequately account for the effects of the conservative factors on the result of the assessment.  相似文献   

9.
Ryu JY  Choi KC  Mulholland JA 《Chemosphere》2006,65(9):1526-1536
Polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) byproducts can be formed in combustion systems by a variety of mechanisms. While total PCDD/F emissions and, to a lesser extent, homologue distributions from incinerators have been found to vary widely depending on combustion conditions, PCDD/F isomer distributions do not. Formation mechanisms can be grouped into two general categories: condensation of precursors, such as chlorinated phenols, and formation from particulate carbon, termed de novo synthesis. In addition to these mechanisms, chlorination and dechlorination reactions may affect isomer patterns. In this work, isomer patterns from field and laboratory municipal waste combustion samples are compared with computed thermodynamic distributions and those from the following experimental investigations: both gas-phase and metal-catalyzed condensation of chlorinated phenols, chlorination of dibenzo-p-dioxin and dibenzofuran, and dechlorination of octachlorodibenzo-p-dioxin and octachlorodibenzofuran. PCDD/F isomer patterns produced by different formation mechanisms in controlled experiments are distinct and robust, largely unaffected by combustion conditions. PCDD isomer patterns from municipal waste combustion are most similar to those produced by CuCl(2)-catalyzed phenol condensation from 10 chlorinated phenols. PCDF isomer patterns are most similar to those produced by chlorination and dechlorination.  相似文献   

10.
ABSTRACT

The temporal and longitudinal characteristics of volatile organic compound (VOC) emissions from the aeration units of a publicly owned treatment works (POTWs) have been investigated by systematic monitoring and mathematical modeling. Field tests have been conducted at a 120-mgd wastewater treatment plant to investigate the hourly, weekly, and seasonal changes of VOC emissions. Variations of VOC emissions along the length of the aeration units have been tested and modeled. Most VOCs have decreasing concentration profiles. Henry's law coefficients and biodegradation constants for the detected compounds have been validated with the improved models and the field test data. More than one-half of the emissions were found to have been generated from the first one-third of the aeration unit length.  相似文献   

11.
The chloroform is a substance that presents a significant risk to or via the aquatic environment. Thus, the emissions, discharges and losses of this substance need to be controlled during wastewater disinfection for reclamation and reuse purposes. Due to its carcinogenetic potential, multiple studies have been carried out on drinking and surface/natural waters but less consideration has been directed to the wastewater disinfection. The focus of this work studied the formation of chloroform during chlorination in prepared waters or artificial matrices that intended to simulate wastewaters stored in landscape ponds for green areas irrigation. The relation between reaction time, chlorine dose, and chloroform formation and the variation of the dissolved organic carbon (DOC) content during the reaction was assessed. A two-variant model was proposed to simulate breakpoint chlorination practices (when chlorine dose is equal or lower than chlorine demand) and super chlorination techniques (when chlorine dose tends to surpass chlorine demand). The model was validated by the application of actual data from working conditions of six wastewater treatment plants located in Algarve, Portugal, including other data obtained in previous research studies that were not used in the model development, and by comparing the predicted values with real measured ones.  相似文献   

12.
Thiocyanate is present in appreciable concentration in coal carbonization wastewater along with other toxicants like phenols, cyanide, sulphide and ammonia. This paper encompasses studies on biodegradation of thiocyanate by a microbial consortium obtained from a biological treatment plant receiving coal carbonization wastewater. Effects of secondary toxicants and growth stimulants on thiocyanate oxidation by the consortium, and thiocyanate transformation in actual and partially treated coal carbonization waste, have also been studied. Results indicate that the consortium can degrade thiocyanate up to 1400 mg litre(-1) in batch culture with 10 mg litre(-1) of initial inoculum within a period of 6 days. Phenol above 500 mg litre(-1) and cyanide at 10 mg litre(-1) completely inhibits thiocyanate oxidation. Sulphide at 32 mg litre(-1) and ammonia at 4000 mg litre(-1) at neutral pH prolongs thiocyanate oxidation from 3 to 6 days and from 4 to 7.5 days, respectively. These studies reveal that elimination of phenolics, their oxidized products, ammonia, cyanides and sulphides is a pre-requisite for effective thiocyanate removal from the waste by the consortium. Bacteria of the genera Pseudomonas and Bacillus dominate the consortium.  相似文献   

13.
Bedner M  Maccrehan WA 《Chemosphere》2006,65(11):2130-2137
The reactivities of the amine-containing pharmaceuticals fluoxetine and metoprolol with hypochlorite were studied using conditions that simulate wastewater disinfection including neutral pH (7.0), a range of reaction times (2–60 min), and a molar excess of hypochlorite relative to the pharmaceutical concentration (5.7 times). The reactions were monitored using liquid chromatography (LC) with several detection modes including ultraviolet absorbance (UV), mass spectrometry (MS), and post-column reaction/reductive electrochemistry (EC) for determining active chlorine products. At levels of 10 μM, both compounds reacted rapidly (<2 min) to form principally N-chloramine products that were stable in aqueous solution for at least 1 h. The reaction was also studied in wastewater, and similar reactivity was noted. These results demonstrate that the cations fluoxetine and metoprolol are likely to be rapidly transformed into neutral N-chloramines during wastewater disinfection. The reactivity of the N-chloramines was also studied with sulfite to simulate dechlorination, which is often employed in wastewater treatment. Both N-chloramines reacted slowly with sulfite. In the pure water dechlorination experiments, it was estimated that 70% and 10% of the peak areas remained after 2 min reaction time for fluoxetine and metoprolol, respectively. At longer reaction times both N-chloramines had been completely reduced by sulfite, and the product of the sulfite reduction reaction was the parent pharmaceutical amine. Since typical dechlorination times in wastewater treatment are on the order of seconds, this suggests the chloramines formed from these two basic drugs might evade dechlorination and be released into the environment. The implications of chloramine release are discussed.  相似文献   

14.
Wildlife and livestock are known to visit and interact with tailings dam and other wastewater impoundments at gold mines. When cyanide concentrations within these water bodies exceed a critical toxicity threshold, significant cyanide-related mortality events can occur in wildlife. Highly mobile taxa such as birds are particularly susceptible to cyanide toxicosis. Nocturnally active bats have similar access to uncovered wastewater impoundments as birds; however, cyanide toxicosis risks to bats remain ambiguous. This study investigated activity of bats in the airspace above two water bodies at an Australian gold mine, to assess the extent to which bats use these water bodies and hence are at potential risk of exposure to cyanide. Bat activity was present on most nights sampled during the 16-month survey period, although it was highly variable across nights and months. Therefore, despite the artificial nature of wastewater impoundments at gold mines, these structures present attractive habitats to bats. As tailings slurry and supernatant pooling within the tailings dam were consistently well below the industry protective concentration limit of 50 mg/L weak acid dissociable (WAD) cyanide, wastewater solutions stored within the tailings dam posed a minimal risk of cyanide toxicosis for wildlife, including bats. This study showed that passively recorded bat echolocation call data provides evidence of the presence and relative activity of bats above water bodies at mine sites. Furthermore, echolocation buzz calls recorded in the airspace directly above water provide indirect evidence of foraging and/or drinking. Both echolocation monitoring and systematic sampling of cyanide concentration in open wastewater impoundments can be incorporated into a gold mine risk-assessment model in order to evaluate the risk of bat exposure to cyanide. In relation to risk minimisation management practices, the most effective mechanism for preventing cyanide toxicosis to wildlife, including bats, is capping the concentration of cyanide in tailings discharged to open impoundments at 50 mg/L WAD.  相似文献   

15.
A microbiological examination of the soil from a cyanide wastewater storage basin was carried out. The storage basin contained water from the cyanidation process of gold extraction, and it was composed principally of simple cyanide, metal complexed cyanide, mainly cuprocyanide, ferro-ferricyanides and thiocyanate. Pseudomonas species were the principal bacteria identified in the soil. Using the storage basin soil as a seed sludge, its potential for the biodegradation of all the cyanide complexes in the mining wastewater was studied in the laboratory, using batch, fed-batch and continuous processes. The ammonia and sulphate produced were quantified. The presence of intermediate products was suspected. In the continuous process, total degradation of all cyanide was observed at a dilution rate of 0.066 day(-1).  相似文献   

16.
Dechlorinating agents and pH adjustment are often used to preserve wastewater samples for cyanide analysis. The effects of four approved preservation protocols on the results of the total cyanide analysis of effluents from four water reclamation plants were examined. The results differed widely, and a clear pattern emerged. Immediate analysis without pH adjustment generally gave total cyanide concentrations below the reporting limit of 5 microg/L, irrespective of the dechlorinating agents used. When the pH was adjusted to > or =12, a slight increase in the measured total cyanide concentration was observed when thiosulfate was used to dechlorinate the samples, and a significant increase (>10 microg/L) was observed when arsenite was used as the dechlorinating agent. These results provide evidence that approved preservation protocols may give rise to cyanide formation in chlorinated wastewater effluent matrices.  相似文献   

17.
To assess the occurrence and fate of nitrosodimethylamine (NDMA) and its precursors in wastewater treatment plants, samples from wastewater treatment plants and industrial sources were analyzed for NDMA, total NDMA precursors, and dimethylamine (DMA). The median concentration of NDMA in untreated wastewater was approximately 80 ng/L, with maximum concentrations up to 790 ng/L presumably occuring because of sources unrelated to domestic wastewater. Concentrations of DMA in untreated wastewater ranged from approximately 50 to 120 microg/L and accounted for a majority of the NDMA precursors. The removal of NDMA during secondary biological treatment exhibited considerable variability, with overall removal ranging from 0 to 75%. In contrast, removal of NDMA precursors and DMA generally exceeded 70%. The median concentration of NDMA in secondary effluent before disinfection was 46 ng/L. Although DMA was removed during secondary treatment, other NDMA precursors in wastewater effluent will result in formation of additional NDMA upon disinfection with chloramines.  相似文献   

18.
Polycyclic musks (HHCB, AHTN, ADBI, AHDI, ATII) and a metabolite of HHCB (HHCB-lactone) were analyzed in sewage sludge samples within the framework of a monitoring network in Switzerland. Mean values in stabilised sludge from 16 wastewater treatment plants were 20.3 mg/kg d.m. for HHCB, 7.3 mg/kg d.m. for AHTN and 1.8 mg/kg d.m. for HHCB-lactone, respectively. Contents of ADBI, AHDI and ATII were between 0.1 and 1.8 g/kg d.m. The results show that polycyclic musks origin mainly from private households and that loads from craft industry, industry and atmospheric deposition are negligible. The technology of wastewater treatment and sludge processing seems to be of minor importance for degradation processes of polycyclic musks. The calculated input in wastewater of polycyclic musks is lower by a factor of 5-7 than the estimates based on use volumes. This discrepancy might be explained by degradation processes, other emission pathways than wastewater or inappropriate estimation of production volumes.  相似文献   

19.
The residual chlorine in chlorine-disinfected and dechlorinated wastewater was characterized using a liquid chromatograph that was switched between reversed-phase separation and flow injection analysis modes, permitting measurement of fractionated and total residual chlorine, respectively. Residuals were detected in the effluent of an operating wastewater treatment plant employing chlorine disinfection and sulfite dechlorination. Despite dechlorination, an estimated total residual chlorine of 3 microM (0.2 ppm as Cl2) was detected in the effluent. To improve dechlorination effectiveness, four alternative agents (ascorbic acid, iron, sulfite plus iodide mediator, thiosulfate) were compared to sulfite on laboratory-chlorinated wastewater. Listed in order of decreasing relative effectiveness, we found: iron metal > sulfite plus iodide approximately = thiosulfate > sulfite > ascorbic acid. Only the iron metal column was completely effective at rapidly removing all traces of residual chlorine.  相似文献   

20.
综述了近几年来炼焦废水及炼焦废水中主要成分(酚类、氨类物质、氰化物)的生化处理方法.其中废水中酚类物质的去除方法有投加有效菌、超滤法等;去除氨类物质的方法有A2/O法、纳滤法和反渗透法等;去除氰化物的方法有生物法和化学法等.综合处理炼焦废水的方法有双层生物膜法、生物脱氮法和含铁活性污泥处理技术等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号