首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
在序批式生物膜反应器内接种以氨氧化细菌和反硝化细菌为主的活性污泥,期望实现亚硝酸型同步硝化反硝化生物脱氮,处理城市污水。在进水TN为30~40 mg/l、氨氮为30~35 mg/l、COD为250 mg/l左右、pH值为7.50~7.80、温度为25±1℃等条件下,研究不同溶解氧对总氮去除率和亚硝酸盐氮积累率的影响,结果表明,在溶解氧浓度为1.5~2.5 mg/l时,可以实现稳定的亚硝酸型硝化反硝化,总氮去除率为75%左右,亚硝酸盐氮积累率为65%~82%。  相似文献   

2.
游离氨对稳定生物亚硝化的影响分析   总被引:12,自引:0,他引:12  
在稳定亚硝化期亚硝化菌的竞争优势形成以后,它对FA的变化不是非常敏感,游离氨的作用主要在于提供了一个有利于亚硝化的竞争环境。稳定亚硝化期的两类硝化菌所表现出的反应活性与系统中两类硝化菌在FA抑制环境中竞争所形成的优劣态势关系紧密。将稳定亚硝化期的平均FA浓度维持在7~10mg/L左右是合适的,FA大于15mg/L以后会对亚硝化菌形成抑制。亚硝化系统中即使通过各种途径抑制硝化菌的活性,也不能使其被完全抑制或消除、洗出。当抑制作用减弱或环境条件适宜时硝化菌很快就能恢复活性,杆状絮体是良好亚硝化现象的特征污泥相。  相似文献   

3.
餐厨废水具有高NH_4~+-N、低C/N的特性,采用传统生物脱氮工艺需要消耗大量碳源,而采用短程硝化-厌氧氨氧化组合工艺可以较好地处理此类废水,通过控制DO浓度来实现废水半短程硝化可为组合工艺提供进水条件。采用自制SBR反应器,控制ρ(DO)在0.5~0.6 mg/L,温度为(30±1)℃,可实现废水的半短程硝化,NO_2~--N累积率可达90%以上,出水n(NO_2~--N)∶n(NH_4~+-N)约为1,系统COD去除率维持在65%左右。系统稳定后对1个周期内的系统进行观察,发现0~1 h内系统中COD得到迅速降解,1~8 h内COD降解速率放缓,出水NO_2~--N累积,较低的DO浓度可有效地限制NOB的活性,反应周期内NO_3~--N浓度基本处于较低水平。当DO浓度过低时,系统中AOB和NOB同时受到抑制,氧化一定量的NH_4~+-N所需时间更长;ρ(DO)浓度高于1.5 mg/L时,NOB活性逐步恢复,系统中NO_3~--N浓度增加。因此,通过控制DO浓度实现低C/N餐厨废水半短程硝化是可行的,可为后续试验创造条件。  相似文献   

4.
C/N比对反硝化过程中亚硝酸盐积累的影响分析   总被引:1,自引:0,他引:1  
袁怡  黄勇  邓慧萍  盛学敏  潘杨  李祥 《环境科学》2013,34(4):1416-1420
在SBR反应器中利用乙酸钠为底物,研究C/N(COD/NO3--N)比对反硝化过程中亚硝酸盐积累的影响.在SBR连续运行过程中(HRT为6 h),C/N比为3时,亚硝酸盐积累率可达45%.批式处理研究表明,C/N比为2.5和3.0时亚硝酸盐的积累率较高,分别为47.50%±1.005%和45.28%±5.469%.C/N比为2.5时获得的亚硝酸盐比积累速率为(30.17±1.70)mg.(g.h)-1,C/N比为3时获得的亚硝酸盐比积累速率为(29.92±1.90)mg.(g.h)-1.C/N比在2.5~4范围内时,C/N比对硝酸盐的还原速率基本无影响,但对亚硝酸盐的积累速率影响显著,C/N比为2.5和3.0时有利于亚硝酸盐的积累,C/N比≥3.5时,亚硝酸盐积累率下降显著.  相似文献   

5.
针对本试验垃圾渗滤液的水质特点和传统生物脱氮工艺存在的问题,结合目前国内外在该方向的研究现状,提出短程硝化反硝化处理垃圾渗滤液的新工艺。通过控制曝气池内溶解氧浓度平均在2.0 mg/L,温度(30±2)℃,实现了稳定的亚硝氮积累和较高的氨氮去除率,亚硝化率和氨氮去除率分别维持在83%和85%左右。试验结果表明,该工艺与传统生物脱氮工艺相比,污泥负荷明显增加,耗氧量和反硝化所需碳源减少,反硝化效率和速率明显提高,从而总氮去除率也显著提高。  相似文献   

6.
低C/N高氨氮消化污泥脱水液部分亚硝化研究   总被引:3,自引:0,他引:3  
采用缺氧滤床+好氧悬浮填料生物膜工艺,在常温(15~29℃)高溶解氧(6~9 mg/L)条件下,于好氧反应器中实现和维持了脱水液部分亚硝化.试验结果表明:通过综合调控进水氨氮负荷(ALR)、进水碱度/氨氮、水力停留时间,可以调节出水NO2--N/NH4+-N比率.当进水氨氮平均为315.80mg/L、平均进水ALR 为0.43kg/(m3·d)、进水碱度/氨氮为5.25时,出水NO2-N/NH4+-N 为1.25左右,为后续ANAMMOX 工艺创造了进水基质条件。同时将好氧区游离氨(FA)控制在1.0~10.3mg/L,实现了亚硝酸盐氮累积率70%~80%的部分亚硝化。综合分析表明:通过动态调控维持反应器内适宜的FA浓度是实现部分亚硝化的主要影响因素。本研究开发了一种适合消化污泥脱水液水质特点的新型部分亚硝化技术。  相似文献   

7.
亚硝酸型反硝化除磷污泥驯化方式的比较   总被引:2,自引:1,他引:2       下载免费PDF全文
以14d作为目标驯化时间,采用SBR反应器比较了厌氧-缺氧(亚硝酸盐一次投加)、厌氧-缺氧-好氧(亚硝酸盐一次投加)、厌氧-好氧+厌氧-缺氧-好氧(亚硝酸盐一次投加)、厌氧-好氧+厌氧-缺氧-好氧(亚硝酸盐连续投加)4种亚硝酸型反硝化除磷污泥驯化方式的优劣.结果表明,经厌氧-好氧+厌氧-缺氧-好氧(亚硝酸盐连续投加)方法驯化后的污泥,能承受的亚硝酸盐初始浓度最高为80mg/L,吸磷速率最高为14mgP/(gVSS·h),所需要的亚硝酸盐投加量较少,是一种较好的亚硝酸型反硝化除磷污泥快速驯化方法.  相似文献   

8.
针对城镇污水中碳源不足、C/N比低导致脱氮性能不佳的问题,建立了A2/O中试装置,通过调整系统缺氧/好氧分区比例及好氧区溶解氧水平,探究亚硝氮积累率及氮类污染物去除情况.结果表明,在DO为2. 0~2. 5 mg·L~(-1)条件下,改变缺氧/好氧分区比例对系统的影响较小,难以实现短程硝化;当控制DO为0. 5~0. 8 mg·L~(-1)、V_缺∶V_好=1∶1时为系统最优工况,此时系统好氧区末端亚硝氮积累率稳定在62%以上,出水总氮降至9. 0 mg·L~(-1),能够实现深度脱氮的目标.分析硝化菌表观活性可知,最优工况下SAOR与SNOR分别(以N/VSS计)为0. 14 g·(g·d)~(-1)和0. 04 g·(g·d)~(-1),二者差值较试验其他阶段更为明显,即NOB活性受到更高程度抑制是提高亚硝氮积累率的直接原因. Illumina MiSeq测序结果表明,该阶段NOB数量显著低于其他阶段.通过间歇OUR法分析缺氧区进出口碳源组成情况,结果表明最优工况下系统通过短程硝化节约碳源27. 3%,可生化性COD在缺氧区消耗63. 6%,远高于其他阶段,是低C/N比城市污水实现深度脱氮的碳源有力保障.  相似文献   

9.
污泥水富集硝化菌和强化城市污水低污泥龄硝化   总被引:2,自引:4,他引:2  
采用西安市邓家村污水处理厂污泥水富集硝化菌(1号反应器内进行),对低污泥龄(6 d)下的模拟城市污水处理系统(2号反应器内进行)进行生物添加,比较了添加前后城市污水处理系统的硝化效果及其活性污泥特性,考察了利用污泥水富集硝化菌并进行生物添加强化硝化的可行性.结果表明,1号反应器的活性污泥的最大氨氧化速率可达81.4 mg/(L·h);添加进行后,2号反应器的出水氨氮浓度以0.992 mg/(L·d)(R2=0.903)的速度呈线性下降,添加稳定后的2号反应器内活性污泥的最大氨氧化速率为添加前的2.36倍;添加停止后,出水氨氮浓度以1.956 mg/(L·d)(R2=0.999)速率上升,但在添加停止34 d后因添加所引起的硝化能力并未完全消失;虽然在添加初期,2号反应器内的原生动物数量与种类以及SVI值都明显增加,但在添加稳定后,基本恢复至添加前的状态.  相似文献   

10.
前置反硝化生物脱氮工艺实现亚硝酸氮积累的试验研究   总被引:2,自引:0,他引:2  
吴学蕾  陈伦强  彭永臻  王亚宜  王璞 《环境科学》2006,27(12):2472-2476
通过试验实现了前置反硝化工艺亚硝酸氮的积累,从温度、pH值、游离氨(FA)浓度、污泥龄、溶解氧(DO)浓度等几个影响亚硝酸氮积累的主要因素逐一分析.采用中试装置在常温条件下处理实际生活污水.在试验开始阶段DO浓度维持在0.5mg/L,出现了亚硝酸氮的积累,随后提高DO浓度到1.5 mg/L以上,亚硝酸氮积累现象随之消失,最后又降低系统中的DO浓度到0.5 mg/L附近,亚硝酸氮积累现象再次出现,由此得出DO是实现亚硝酸氮积累的关键因素.试验发现有效地控制DO浓度在0.5 mg/L可实现亚硝酸氮比较持久稳定的积累.  相似文献   

11.
《环境工程》2015,33(1):62-66
将短程硝化与生物流化床相结合,采用低碳氮比的人工合成污水进行启动,考察进水COD、氨氮、DO、p H对硝化和亚硝化过程的影响。研究表明,较短的水力停留时间(HRT)和较少的接种污泥量有利于生物膜的生长,能够成功实现生物流化床的快速启动。高进水氨氮浓度有助于反应器实现亚硝酸盐的积累,但是这种积累并不稳定。当反应器中p H为7.5~8.1,ρ(DO)为1.5~2.5 mg/L时,最大亚硝化率达到75%左右,氨氮去除率达85%以上。出水NO-2-N和NO-3-N浓度随进水COD浓度的增加而减少;当进水COD浓度为50 mg/L时,出水硝酸盐浓度急剧减少,亚硝酸盐浓度有所降低,反应器发生同步硝化反硝化脱氮现象。  相似文献   

12.
研究一体化连续流间歇曝气膜生物反应器(IMBR)处理低C/N城市污水的工艺效能.试验结果表明:反应器在曝气2 h、搅拌2 h的运行模式下,对COD、NH_4~+;-N、TN和SS的平均去除率分别达到了87%,83.4%,75.4%和97.81%,各出水质量浓度平均值分别为17.5,4.59,7.63和2 mg/L,出水水质达到了GB/T18920-2002<城市污水再生利用城市杂用水水质>标准.
Abstract:
The integrated intermittent-aeration membrane biological reactor (IMBR) was investigated to treat the low C/N ratio urban sewage. Pollutants removal efficiency of IMBR under the condition of aeration 2 h and agitation 2 h were researched. The results showed that the average removal rates of COD, NH/ -N, TN and SS were 87% , 83.4% , 75.4% and 97.81% respectively. The average concentrations of COD,NH_4~+ -N,TN and SS in the effluent of IMBR system were 17.5,4.59,7.63 and 2 rag/L respectively. The effluent quality of IMBR could meet the standard of the requirement reclaimed water quality criterion (GB/T18920-2002).  相似文献   

13.
研究一体化连续流间歇曝气膜生物反应器(IMBR)处理低C/N城市污水的工艺效能。试验结果表明:反应器在曝气2 h、搅拌2 h的运行模式下,对COD、NH4+-N、TN和SS的平均去除率分别达到了87%,83.4%,75.4%和97.81%,各出水质量浓度平均值分别为17.5,4.59,7.63和2 mg/L,出水水质达到了GB/T18920-2002《城市污水再生利用城市杂用水水质》标准。  相似文献   

14.
通过对亚硝化反应器中的氨氮、亚硝酸盐氮变化趋势的试验研究,认为渗滤液中存在着可以转化成氨氮的有机氮,但有机氮的转化不是在瞬时完成的。利用劳伦斯-麦卡蒂模式求得模型参数为氨氮vmax=4.67 mg/(mg.d),Ks=464.4 mg/L,Y=0.1966 mg/mg,Kd=0.55384/d,通过模型得出了反应器内生物量浓度、出流水质与污泥龄的关系,以期为实际工程中垃圾渗滤液生物脱氮提供借鉴。  相似文献   

15.
研究了A/DAT-IAT生物脱氮工艺在低溶解氧浓度下,处理高氨氮、低碳氮比工业废水时,去除氨氮过程中亚硝酸盐积累的情况。结果表明,系统在低DO浓度下有效去除氨氮的同时,能够实现长期稳定的亚硝酸盐积累,并且没有发生污泥膨胀。在试验的稳定运行阶段,当系统运行正常,DO=1·0mg/L时,DAT池亚硝化率(NO2--N/NOX--N)平均可达82·1%,氨氮去除率>95%,污泥的沉降性能一直良好,SVI值处于90~125mL/g范围内。  相似文献   

16.
李军  张宁  杨海燕  李艺  张韵  周婷 《环境工程》2006,24(3):23-25,28
在全程好氧工况或低氧+厌氧+好氧工况下,采用耦合生物反应器处理低CN生活污水和污泥减量的试验结果表明:在进水CODCr负荷0.80~1.20kg(m3·d)、NH+4N浓度70~90mgL、TN浓度75~110mgL、HRT=8h、温度约25℃条件下,CODCr和NH4N去除率均可达85%和90%以上;采用低氧+厌氧+好氧工况较全程好氧工况具有更高的TN去除率和更低的污泥产率,其TN去除率高达81.1%,污泥产率为0.065kgkg。  相似文献   

17.
通过实时控制系统并结合其他工艺参数的调控,在SBR系统中实现了垃圾渗滤液短程硝化过程的快速启动,并在稳定期考察了固定气体流量曝气系统中溶解氧(DO)对短程硝化的影响。结果表明:在线监测p H的"氨谷"可判断氨氧化反应的终点;采用固定气体流量的曝气方式,使得单周期好氧段后期ρ(DO)高达7.95 mg/L,出水亚硝态氮积累率维持在98.3%左右,氨氮去除率高达96.5%;好氧段后期高溶解氧并没有导致硝化菌(NOB)的再次增长,短程硝化系统稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号