首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Monitoring land use and land cover change (LUCC) and understanding forest cover dynamics is extremely important in sustainable development and management of forest ecosystems. This study analyzed the spatial and temporal pattern of LUCC in the Yaln?zçam and U?urlu forest planning units which are located in the northeast corner of Turkey. The investigation also evaluates the temporal changes of the spatial structure of forest conditions through the spatial analysis of forest-cover type maps from 1972 and 2005 using geographical information systems and FRAGSTATSTM. As an overall change between 1972 and 2005, there was a net increase of 1,823 ha in forested areas, and cumulative forest improvement accounted for 2.06 %. In terms of spatial configuration, the landscape structure in the study area changed substantially over the 33-year study period, resulting in fragmentation of the landscape as indicated by large patch numbers and smaller mean patch sizes, owing to heavy grazing, illegal cutting, and uncontrolled stand treatments.  相似文献   

2.
Recognition and understanding of landscape dynamics as a historical legacy of disturbances are necessary for sustainable management of forest ecosystems. This study analyzes spatial and temporal changes in land use and forest cover patterns in a typical mountain forest area in Rize Forest Enterprise of the Northeastern part of Turkey. The area is investigated by evaluated the temporal changes of spatial structure of forest conditions through spatial analysis of forest cover type maps from 1984 and 2007 using GIS and FRAGSTATS. The quantative evidences presented here showed that there were drastic changes in the temporal and spatial dynamics of land use/forest cover. As an overall change between 1984 and 2007, there was a net decrease of 2.30% in total forested areas. On one hand, productive forest areas decreased 12,506 ha, on the other hand, degraded forest areas increased 14,805 ha. In examining the changes of crown closure and development stages of forest ecosystem during the study period, the forest stand area with medium crown closures increased. Regenerated area increased while the other development stages were left to grow to mature development stages in the period. These results regarding to crown closure and development stage showed that forest quality has increased but total forest areas decreased. This is partially due to out-migration of rural population in Rize and Cayeli towns. In terms of spatial configuration, analysis of the metrics revealed that landscape structure in Study area had changed substantially over the 23-year study period, resulting in fragmentation of the landscape as indicated by the large patch numbers and the smaller mean patch sizes due to heavy timber subtraction, illegal cutting, and uncontrolled stand treatments.  相似文献   

3.
Recognition and understanding of landscape dynamics as a historical legacy of disturbances are necessary for sustainable management of forest ecosystems. This study analyzed spatial and temporal changes in land use and land cover patterns in a typical mountain watershed in the Gumushane district along the Northeastern part of Turkey. The area is investigated by comparing LANDSAT images from 1987 to 2000 and evaluated the temporal changes of spatial structure of forest conditions through spatial analysis of forest cover type maps from 1971 and 1987 using GIS and FRAGSTATS™. The results show a general decreasing trend in area of natural land cover types including broadleaf and conifer forests as well as coppice between 1971 and 1987 (0.54%, respectively). In contrast, between 1987 and 2000 this natural land cover types show increasing trend (1.6%). In parallel with forest dynamics, the area of managed land including lowland and upland agricultural areas, rangelands and grasslands increased during the first period and decreased during second period. In terms of spatial configuration, Gümüşhane forests aren’t generally fragmented by intensive forest utilization in the latter periods. This is partially due to out-migration of rural population in Gümüşhane. Nevertheless, land use pattern significantly changed over time depending on a few factors such as unregulated management actions, social pressure and demographic movements. The study revealed that demographic movements have a major effect on landscape dynamics.  相似文献   

4.
A continuing discussion in the field of ecology and forest management concerns the implications of clearcutting as a functional replacement for wildfire in disturbance-driven ecosystems. At the landscape level, spatial pattern has been shown to influence many ecologically important processes. Satellite imagery allows the evaluation of structural patterns created by alternative forest management activities at broad scales. In Northwestern Ontario, both clearcutting and wildfire have occurred over large contiguous areas. Spatial characteristics including composition, patch size, patch shape, and interspersion were calculated from classified Landsat Thematic Mapper (TM) data at two thematic scales and used to compare post-wildfire and clearcut landscapes. Patches in the clearcut landscape were found to be larger in size, and had a more irregular shape than those in the wildfire landscape. Differences in landscape structure were much more pronounced at broad scales than at fine thematic scales.  相似文献   

5.
Scale is important to consider when investigating effects of the environment on a species. Breeding Bird Survey (BBS) data and landscape metrics derived from aerial photographs were evaluated to determine how relationships of bird abundances with landscape variables changed over a continuous range of 16 spatial scales. We analyzed the average number of birds per stop (1985–1994) for five songbird species (family Cardinalidae) for each of 50 stops on 198 BBS transects throughout six states in the Central Plains, USA. Land along each transect was categorized into six cover types, and landscape metrics of fractal dimension (a measure of shape complexity of habitat patches), edge density, patch density, and percent area were calculated, with principal components used to construct composite environmental variables. Associations of bird abundances and landscape variables changed in accordance with small scale changes. Abundances of three species were correlated with edge density and one with component I, which subsumes initial variables of patch density for urban, closed forest, open forest, and open country. Fractal dimension and component II (summarizing amount of closed forest versus open country) were associated with the most species. Correlation patterns of fractal dimension with northern cardinal (Cardinalis cardinalis) and painted bunting (Passerina ciris) abundances were similar, with highest correlations at intermediate to small scales, suggesting indirectly that these species thrive in areas where local habitat conditions are most important. Multiscale analysis can provide insight into the spatial scale(s) at which species respond, a topic of intrinsic scientific interest with applied implications for researchers establishing protocols to assess and monitor avian populations.  相似文献   

6.
Monitoring long-term change in forested landscapes is an intimidating challenge with considerable practical, methodological, and theoretical limitations. Current field approaches used to assess vegetation change at the plot-to-stand scales and nationwide forest monitoring programs may not be appropriate at landscape scales. We emphasize that few vegetation monitoring programs (and, thus, study design models) are designed to detect spatial and temporal trends at landscape scales. Based primarily on advice from many sources, and trial and error, we identify 14 attributes of a reliable long-term landscape monitoring program: malpractice insurance for landscape ecologists. The attributes are to: secure long-term funding and commitment; develop flexible goals; refine objectives; pay adequate attention to information management; take an experimental approach to sampling design; obtain peer-review and statistical review of research proposals and publications; avoid bias in selection of long-term plot locations; insure adequate spatial replication; insure adequate temporal replication; synthesize retrospective, experimental, and related studies; blend theoretical and empirical models with the means to validate both; obtain periodic research program evaluation; integrate and synthesize with larger and smaller scale research, inventory, and monitoring programs; and develop an extensive outreach program. Using these 14 attributes as a guide, we describe one approach to assess the potential effect of global change on the vegetation of the Front Range of the Colorado Rockies. This self-evaluation helps identify strengthes and weaknesses in our program, and may serve the same role for other landscape ecologists in other programs.  相似文献   

7.
Knowledge of the spatial distribution of plant species is essential to conservation and forest managers in order to identify high priority areas such as vulnerable species and habitats, and designate areas for reserves, refuges and other protected areas. A reliable map of the diversity of plant species over the landscape is an invaluable tool for such purposes. In this study, the number of species, the exponent Shannon and the reciprocal Simpson indices, calculated from 141 quadrat sites sampled in a tropical forest were used to compare the performance of several spatial interpolation techniques used to prepare a map of plant diversity, starting from sample (point) data over the landscape. Means of mapped classes, inverse distance functions, kriging and co-kriging, both, applied over the entire studied landscape and also applied within vegetation classes, were the procedures compared. Significant differences in plant diversity indices between classes demonstrated the usefulness of boundaries between vegetation types, mapped through satellite image classification, in stratifying the variability of plant diversity over the landscape. These mapped classes, improved the accuracy of the interpolation methods when they were used as prior information for stratification of the area. Spatial interpolation by co-kriging performed among the poorest interpolators due to the poor correlation between the plant diversity variables and vegetation indices computed by remote sensing and used as covariables. This indicated that the latter are not suitable covariates of plant diversity indices. Finally, a within-class kriging interpolator yielded the most accurate estimates of plant diversity values. This interpolator not only provided the most accurate estimates by accounting for the indices' intra-class variability, but also provided additional useful interpretations of the structure of spatial variability of diversity values through the interpretation of their semi-variograms. This additional role was found very useful in aiding decisions in conservation planning.  相似文献   

8.
通过对兵团土地利用空间格局变化分析,选择合适的土地利用政策保护生态环境。运用RS和GIS技术对兵团近10年土地利用/覆被变化及景观格局空间变化进行分析,并在此基础上运用Markov模型对未来30年土地利用变化进行预测。2000—2010年,新疆生产建设兵团景观多样性升高,连通性增强,形状愈来愈简单,景观格局整体变化不大;草地、灌丛、湿地、荒漠和冰川/永久积雪面积减少,耕地和城镇面积增加,森林保持稳定;人为干扰对土地利用结构的变化具有重要作用,土地利用强度受人为活动影响的同时受土地利用政策影响;在未来30年间耕地和城镇面积继续增加,除森林基本保持不变外其他土地利用类型均减小。兵团城镇用地与草地和耕地之间的矛盾逐渐显现,势必引起兵团生态格局的变化。因此,必须实行合适的土地利用政策保护环境。  相似文献   

9.
The scale of investigation for disturbance-influenced processes plays a critical role in theoretical assumptions about stability, variance, and equilibrium, as well as conservation reserve and long-term monitoring program design. Critical consideration of scale is required for robust planning designs, especially when anticipating future disturbances whose exact locations are unknown. This research quantified disturbance proportion and pattern (as contagion) at multiple scales across North America. This pattern of scale-associated variability can guide selection of study and management extents, for example, to minimize variance (measured as standard deviation) between any landscapes within an ecoregion. We identified the proportion and pattern of forest disturbance (30 m grain size) across multiple landscape extents up to 180 km2. We explored the variance in proportion of disturbed area and the pattern of that disturbance between landscapes (within an ecoregion) as a function of the landscape extent. In many ecoregions, variance between landscapes within an ecoregion was minimal at broad landscape extents (low standard deviation). Gap-dominated regions showed the least variance, while fire-dominated showed the largest. Intensively managed ecoregions displayed unique patterns. A majority of the ecoregions showed low variance between landscapes at some scale, indicating an appropriate extent for incorporating natural regimes and unknown future disturbances was identified. The quantification of the scales of disturbance at the ecoregion level provides guidance for individuals interested in anticipating future disturbances which will occur in unknown spatial locations. Information on the extents required to incorporate disturbance patterns into planning is crucial for that process.  相似文献   

10.
Human actions on landscapes are a principal threat to the ecological integrity of river ecosystems worldwide. Tropical landscapes have been poorly investigated in terms of the impact of catchment land cover alteration on water quality and biotic indices in comparison to temperate landscapes. Effects of land cover in the catchment at two spatial scales (catchment and site) on stream physical habitat quality, water quality, macroinvertebrate indices and community composition were evaluated for Uma Oya catchment in the upper Mahaweli watershed, Sri Lanka. The relationship between spatial arrangement of land cover in the catchment and water quality, macroinvertebrate indices and community composition was examined using univariate and multivariate approaches. Results indicate that chemical water quality variables such as conductivity and total dissolved solids are mostly governed by the land cover at broader spatial scales such as catchment scale. Shannon diversity index was also affected by catchment scale forest cover. In stream habitat features, nutrients such as N-NO3 ?, macroinvertebrate family richness, %shredders and macroinvertebrate community assemblages were predominantly influenced by the extent of land cover at 200 m site scale suggesting that local riparian forest cover is important in structuring macroinvertebrate communities. Thus, this study emphasizes the importance of services provided by forest cover at catchment and site scale in enhancing resilience of stream ecosystems to natural forces and human actions. Findings suggest that land cover disturbance effects on stream ecosystem health could be predicted when appropriate spatial arrangement of land cover is considered and has widespread application in the management of tropical river catchments.  相似文献   

11.
Remote sensing is an important tool for studying patterns in surface processes on different spatiotemporal scales. However, differences in the spatiospectral and temporal resolution of remote sensing data as well as sensor-specific surveying characteristics very often hinder comparative analyses and effective up- and downscaling analyses. This paper presents a new methodical framework for combining hyperspectral remote sensing data on different spatial and temporal scales. We demonstrate the potential of using the “One Sensor at Different Scales” (OSADIS) approach for the laboratory (plot), field (local), and landscape (regional) scales. By implementing the OSADIS approach, we are able (1) to develop suitable stress-controlled vegetation indices for selected variables such as the Leaf Area Index (LAI), chlorophyll, photosynthesis, water content, nutrient content, etc. over a whole vegetation period. Focused laboratory monitoring can help to document additive and counteractive factors and processes of the vegetation and to correctly interpret their spectral response; (2) to transfer the models obtained to the landscape level; (3) to record imaging hyperspectral information on different spatial scales, achieving a true comparison of the structure and process results; (4) to minimize existing errors from geometrical, spectral, and temporal effects due to sensor- and time-specific differences; and (5) to carry out a realistic top- and downscaling by determining scale-dependent correction factors and transfer functions. The first results of OSADIS experiments are provided by controlled whole vegetation experiments on barley under water stress on the plot scale to model LAI using the vegetation indices Normalized Difference Vegetation Index (NDVI) and green NDVI (GNDVI). The regression model ascertained from imaging hyperspectral AISA-EAGLE/HAWK (DUAL) data was used to model LAI. This was done by using the vegetation index GNDVI with an R 2 of 0.83, which was transferred to airborne hyperspectral data on the local and regional scales. For this purpose, hyperspectral imagery was collected at three altitudes over a land cover gradient of 25 km within a timeframe of a few minutes, yielding a spatial resolution from 1 to 3 m. For all recorded spatial scales, both the LAI and the NDVI were determined. The spatial properties of LAI and NDVI of all recorded hyperspectral images were compared using semivariance metrics derived from the variogram. The first results show spatial differences in the heterogeneity of LAI and NDVI from 1 to 3 m with the recorded hyperspectral data. That means that differently recorded data on different scales might not sufficiently maintain the spatial properties of high spatial resolution hyperspectral images.  相似文献   

12.
Understanding the historical dynamics, composition, and environmental disturbances of forest landscapes provides a context for monitoring changes, describing trends, and establishing reference conditions. This study analyses the temporal changes in forest ecosystem structure in Artvin Forest Planning Unit (AFPU), Turkey, during 1972–2002 period based on digitized forest stand type maps using geographic information system (GIS) and interpretation of satellite data. The results showed that there was a net decrease of 450 ha in total forested areas between 1972 and 2002. Forest ecosystem structure changed over time depending on a few factors such as demographic movements, insect outbreaks, dam and road construction, unregulated management actions, and social pressure. In conclusion, temporal changes and the factors affecting these changes should be determined for sustainable management of natural resources.  相似文献   

13.
This study analyses forest dynamics and land use/land cover change over a 43-year period using spatial-stand-type maps of temporal forest management plans of Karaisal? Forest Enterprise in the Eastern Mediterranean Region of Turkey. Stand parameters (tree species, crown closures and developmental stages) of the dynamics and changes caused by natural or artificial intervention were introduced and mapped in a Geographic Information System (GIS) and subjected to fragmentation analysis using FRAGSTATS. The Karaisal? Forest Enterprise was first planned in 1969 and then the study area was planned under the Mediterranean Forest Use project in 1991 and five-term forest management plans were made. In this study, we analysed only four periods (excluding 1982 revision plans): 1969, 1991, 2002 and 2012. Between 1969 and 2012, overall changes included a net increase of 3,026 ha in forested areas. Cumulative forest improvement accounted for 2.12 % and the annual rate of total forest improvement averaged 0.08 %. In addition, productive forest areas increased from 36,174 to 70,205 ha between 1969 and 2012. This translates into an average annual productive forest improvement rate of 1.54 %. At the same time, fully covered forest areas with crown closure of “3” (>70 %) increased about 21,321 ha, and young forest areas in developmental stage of “a” (diameter at breast height (dbh)?<?8 cm) increased from 716 to 13,305 ha over the 43-year study period. Overall changes show that productive and fully covered forest areas have increased egregiously with a focus on regenerated and young developmental stages. A spatial analysis of metrics over the 43-year study period indicated a more fragmented landscape resulting in a susceptible forest to harsh disturbances.  相似文献   

14.
Part of this paper has been prepared for the lecture Forest Health Assessment-Criteria,Methods and Problems given by the author at the UIMPuniversity course Sanidad Forestal en el Bosques Mediterraneos yTemplados. Implicacion de la Contaminacion Atmosferica y del Cambio Global, held in Valencia, Spain, October, 1995. Assessment and monitoring of forest health representsa key point for environmental policy and for the management ofenvironmental resources. With the renewed interest in assessment andmonitoring of forest health generated by the suspected occurrence ofa widespread forest decline in Europe and North America, manyactivities have been undertaken: however, some questions should beconsidered and clarified when attempting to estimate forest health.Particularly, the objective(s) of the assessment and monitoringprogram should be carefully identified. Identification of a program‘stask has a number of implications and consequences: it implies adefinition of what concept of forest health (forest ecosystem health,forest health or forest trees health?) is assumed, what will be thetarget entity to be monitored, and therefore the identification of therelevant assessment questions and assessment endpoints.Consequences concern the definition of the spatial scale (frominternational to landscape and plot scale monitoring) and ecologicalcoverage (from single species population to population ofecosystems) of the program, which can have a considerable influenceon the choice of the proper sampling strategy and tactic, as well ason the most suitable methods, indicators and indices to be used.Although much of the work in the field of forest health and airpollution has concentrated on surveys on crown transparency anddiscoloration, there is an entire range of methods, indicators andindices developed to assess the health status of forests. The decisionas to which ones should be used will depend on the aim of theprogram and on economic and practical considerations. A furtherconsideration concerns the time span of the program, but anydecision in this field is subject to many limitations due to difficultiesin predicting future monitoring needs. All these points should becarefully considered and implemented according to a rigorousQuality Assurance procedure since any decision will influence futurework for many years.  相似文献   

15.
土壤盐分含量(SSC)是评价土地退化和肥力水平的重要指标,实现SSC状态和空间分异的快速准确监测对区域环境的优化管理极为关键。选取潍北平原为研究区,野外采集233处土壤样品并获取同时相Sentinel-2多光谱影像,进一步将特征光谱波段和构建的最优光谱指数作为输入自变量,测试得到的SSC实测值为因变量,最后将空间关联函数引入到随机森林中去建立基于空间关联随机森林算法的SSC遥感估算模型,完成区域尺度上的SSC反演估算与空间制图。结果表明:影像的B3、B8和B11是SSC的特征波段,通过波段比值变换能够增强卫星光谱信号对SSC的吸收响应,筛选得到的最优光谱指数分别为RI34(波段3和波段4的反射率比值)、RI711(波段7和波段11的反射率比值)、ND611(波段6和波段11的反射率归一化值)和D45(波段4和波段5的反射率差值);仅用特征波段或最优光谱指数来构建模型不能取得满意的SSC估算精度,空间关联随机森林模型的SSC估算精度要高于随机森林模型;在将上述特征波段和最优光谱指数共同输入空间关联随机...  相似文献   

16.
Ecological mapping attempts to objectively and spatially delimit and represent the natural organization and structure of the landscape. It offers nested levels of resolution, based upon a regionalization process, and provides an ecological basis for planning activities that may impact upon the environment.The essential principles of ecological mapping, as applied by the Quebec Ministry of Environment and Wildlife, are summarized. A methodological mapping approach is proposed for the determination of significant land portions for forest management using an ecological map at a scale of 1:50 000. At this scale, two nested levels of perception are expressed: 1) the topographic complex, and 2) the topographic entity. The topographic entity can be further subdivided into working units based upon operational criteria oriented to forest management. Within each nested level from topographic complex to working unit, there is a corresponding increase in the amount of detailed information available. Ecological mapping undertaken at 1:50 000 scale can provide a reliable and robust tool for planning forest management activities. In most cases, major ecological variations can be expressed and mapped at this scale; however, a greater degree of generalization must be accepted in the planning process when working at this scale rather than at larger scales.  相似文献   

17.
The objective of this research project is to develop, test, validate, and demonstrate an analytical framework for assessing regional-scale forest disturbance in the mid-Atlantic region by linking forest disturbance and forest nitrogen export to surface waters at multiple spatial scales. It is hypothesized that excessive nitrogen (N) leakage (export) from forested watersheds is a potentially useful, integrative "indicator" of a negative change in forest function which occurs in synchrony with changes in forest structure and species composition. Our research focuses mainly on forest disturbance associated with recent defoliations by the gypsy moth larva (Lymantria dispar) at spatial scales ranging from small watersheds to the entire Chesapeake Bay watershed. An approach for assessing the magnitude of forest disturbance and its impact on surface water quality will be based on an empirical model relating forest N leakage and gypsy moth defoliation that will be calibrated using data from 25 intensively-monitored forested watersheds in the region and tested using data from more than 60 other forested watersheds in Virginia. Ultimately, the model will be extended to the region using spatially-extensive data describing: 1) the spatial distribution of dominant forest types in the mid-Atlantic region based on both remote sensing imagery and plot-scale vegetation data; 2) the spatial pattern of gypsy moth defoliation of forested areas from aerial mapping; and 3) measurements of dissolved N concentrations in streams from synoptic water quality surveys.  相似文献   

18.
Achieving adequate and desirable forest regeneration is necessary for maintaining native tree species and forest composition. Advance tree seedling and sapling regeneration is the basis of the next stand and serves as an indicator of future composition. The Pennsylvania Regeneration Study was implemented statewide to monitor regeneration on a subset of Forest Inventory and Analysis plots measured by the U.S. Forest Service. As management techniques are implemented to improve advance regeneration, assessments of the change in the forest resource are needed. When the primary focus is on detecting change, hypothesis tests should have small type II (β) error rates. However, most analyses are based on minimizing type I (α) error rates and type II error rates can be quite large. When type II error rates are high, actual improvements in regeneration can remain undetected and the methods that brought these improvements may be deemed ineffective. The difficulty in detecting significant change in advance regeneration when small type I error rates are given priority is illustrated. For statewide assessments, power (1-β) to detect changes in proportion of area having adequate advance regeneration is relatively weak (≤0.5) when the change is smaller than 0.05. For evaluations conducted at smaller spatial scales, such as wildlife management units, the reduced sample size results in only marginal power even when relatively large changes (≥0.20) in area proportion occur. For fixed sample sizes, analysts can consider accepting larger type I error rates to increase the probability of detecting change (smaller type II error rates) when it occurs, such that management methods that positively affect regeneration can be identified.  相似文献   

19.
Bafa Lake Nature Park is one of Turkey’s most important legally protected areas. This study aimed at analyzing spatial change in the park environment by using object-based classification technique and landscape structure metrics. SPOT 2X (1994) and ASTER (2005) images are the primary research materials. Results show that artificial surfaces, low maqui, garrigue, and moderately high maqui covers have increased and coniferous forests, arable lands, permanent crop, and high maqui covers have decreased; coniferous forest, high maqui, grassland, and saline areas are in a disappearance stage of the land transformation; and the landscape pattern is more fragmented outside the park boundaries. The management actions should support ongoing vegetation regeneration, mitigate transformation of vegetation structure to less dense and discontinuous cover, control the dynamics at the agricultural–natural landscape interface, and concentrate on relatively low but steady increase of artificial surfaces.  相似文献   

20.
This study aims to investigate the change in spatial-temporal configuration of secondary forest succession and generate measurements for monitoring the changes in structural plant diversity in Yaln?zçam Scots pine forest in NE Turkey from 1972 to 2005. The successional stages were mapped using the combination of Geographic Information System (GIS), Global Positioning System (GPS), aerial photos and high resolution satellite images (IKONOS). Forest structure and its relationship with structural plant diversity along with its changes over time were characterized using FRAGSTATS. In terms of spatial configuration of seral stages, the total number of fragments increased from 572 to 735, and mean size of patch (MPS) decreased from 154.97 ha to 120.60 ha over 33 years. The situation resulted in forestation serving appropriate conditions for plant diversity in the area. As an overall change in study area, there was a net increase of 1823.3 ha forest during the period with an average annual forestation rate of 55.25 ha year?1(0.4% per year). In conclusion, the study revealed that stand type maps of forest management plans in Turkey provide a great chance to monitor the changes in structural plant diversity over time. The study further contributes to the development of a framework for effective integration of biodiversity conservation into Multiple Use Forest Management (MUFM) plans using the successional stages as a critical mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号