首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hunsaker, Carolyn T., Thomas W. Whitaker, and Roger C. Bales, 2012. Snowmelt Runoff and Water Yield Along Elevation and Temperature Gradients in California’s Southern Sierra Nevada. Journal of the American Water Resources Association (JAWRA) 48(4): 667‐678. DOI: 10.1111/j.1752‐1688.2012.00641.x Abstract: Differences in hydrologic response across the rain‐snow transition in the southern Sierra Nevada were studied in eight headwater catchments – the Kings River Experimental Watersheds – using continuous precipitation, snowpack, and streamflow measurements. The annual runoff ratio (discharge divided by precipitation) increased about 0.1 per 300 m of mean catchment elevation over the range 1,800‐2,400 m. Higher‐elevation catchments have lower vegetation density, shallow soils with rapid permeability, and a shorter growing season when compared with those at lower elevations. Average annual temperatures ranged from 6.8°C at 2,400 m to 8.6 at 1,950 m elevation, with annual precipitation being 75‐95% snow at the highest elevations vs. 20‐50% at the lowest. Peak discharge lagged peak snow accumulation on the order of 60 days at the higher elevations and 20 to 30 days at the lower elevations. Snowmelt dominated the daily streamflow cycle over a period of about 30 days in higher elevation catchments, followed by a 15‐day transition to evapotranspiration dominating the daily streamflow cycle. Discharge from lower elevation catchments was rainfall dominated in spring, with the transition to evapotranspiration dominance being less distinct. Climate warming that results in a longer growing season and a shift from snow to rain would result in earlier runoff and a lower runoff ratio.  相似文献   

2.
Streamside management zone (SMZ) breakthroughs were identified and characterized to determine frequency and potential causes, in order to provide enhanced guidance for future water quality protection. Ten kilometers of SMZs were carefully examined for partial or complete breakthroughs. With partial breakthroughs the SMZ trapped sediment before it reached the stream, while complete breakthroughs appeared to have allowed sediment to have passed through with minimal restriction. A total of 41 breakthroughs occurred (33 complete, 8 partial) across 16 sites, averaging 1 complete breakthrough per 0.3 km of SMZ length. The most common complete breakthroughs were caused by stream crossings (42%), reactivation of legacy agricultural gullies (27%), and harvest related soil disturbances near/within SMZs (24%). Pearson correlations of site characteristics at breakthroughs indicated no strong relationships between breakthrough sites, representing the variable nature of these unique circumstances. Stream crossings are an intentional breakthrough for access purposes, but resulting environmental impacts can be reduced with best management practice implementation. Current recommendations for SMZs tend to work in most situations, yet further research is needed to identify causal factors and quantify breakthrough severity.  相似文献   

3.
Abstract: Pollutant loading from storm runoff is considered to be an important component of nonpoint source pollution in urban areas. In developing countries, because of the accelerated urbanization and motorization, storm runoff pollution has become a challenge for improving aquatic environmental quality. An effective storm runoff management plan needs to be developed, and questions concerning how much and which proportion of a storm should be treated need to be answered. In this study, a model is developed to determine the fraction of storm runoff that needs to be treated to meet the discharge standard within a given probability. The model considers that the pollutants can be mobilized during the early stage of a storm. The model is applied to a field study of polycyclic aromatic hydrocarbons (PAHs) in road runoff in Beijing, China. In this case, the probability that the PAH load will be mobilized with suspended sediments by the earlier portion of the flush is 73%. Given the high PAH loading in the study area and the referenced discharge standard, the probability that the entire runoff should be captured and treated is 94%. Thus, urban planners need to consider treatment systems for the majority of the storms in this area, whether the PAH load is in the first flush or not. This methodology can be applied to other regions where PAH loads may result in different management outcomes.  相似文献   

4.
Abstract: The Soil and Water Assessment Tool (SWAT) has been applied successfully in temperate environments but little is known about its performance in the snow‐dominated, forested, mountainous watersheds that provide much of the water supply in western North America. To address this knowledge gap, we configured SWAT to simulate the streamflow of Tenderfoot Creek (TCSWAT). Located in central Montana, TCSWAT represents a high‐elevation watershed with ~85% coniferous forest cover where more than 70% of the annual precipitation falls as snow, and runoff comes primarily from spring snowmelt. Model calibration using four years of measured daily streamflow, temperature, and precipitation data resulted in a relative error (RE) of 2% for annual water yield estimates, and mean paired deviations (Dv) of 36 and 31% and Nash‐Sutcliffe (NS) efficiencies of 0.90 and 0.86 for monthly and daily streamflow, respectively. Model validation was conducted using an additional four years of data and the performance was similar to the calibration period, with RE of 4% for annual water yields, Dv of 43% and 32%, and NS efficiencies of 0.90 and 0.76 for monthly and daily streamflow, respectively. An objective, regression‐based model invalidation procedure also indicated that the model was validated for the overall simulation period. Seasonally, SWAT performed well during the spring and early summer snowmelt runoff period, but was a poor predictor of late summer and winter base flow. The calibrated model was most sensitive to snowmelt parameters, followed in decreasing order of influence by the surface runoff lag, ground water, soil, and SCS Curve Number parameter sets. Model sensitivity to the surface runoff lag parameter reflected the influence of frozen soils on runoff processes. Results indicated that SWAT can provide reasonable predictions of annual, monthly, and daily streamflow from forested montane watersheds, but further model refinements could improve representation of snowmelt runoff processes and performance during the base flow period in this environment.  相似文献   

5.
Ground and surface water selenium (Se) contamination is problematic throughout the world, leading to harmful impacts on aquatic life, wildlife, livestock, and humans. A groundwater reactive transport model was applied to a regional‐scale irrigated groundwater system in the Lower Arkansas River Basin in southeastern Colorado to identify management practices that remediate Se contamination. The system has levels of surface water and groundwater Se concentrations exceeding the respective chronic standard and guidelines. We evaluate potential solutions by combining the transport model with an assessment of the cost to employ those practices. We use a framework common in economics and engineering fields alike, the Pareto frontier, to show the impact of four different best management practices on the tradeoffs between Se and cost objectives. We then extend that analysis to include institutional constraints that affect the economic feasibility associated with each practice. Results indicate that although water‐reducing strategies have the greatest impact on Se, they are the hardest for farmers to implement given constraints common to western water rights institutions. Therefore, our analysis shows that estimating economic and environmental tradeoffs, as is typically done with a Pareto frontier, will not provide an accurate picture of choices available to farmers where institutional constraints should also be considered.  相似文献   

6.
虚拟水以其形象的表达和丰富的内涵,成为2000年以后全球水科学研究领域的热点,被广泛认为是深入研究水资源管理的重要概念,也是衡量人类对水资源系统真实占有量的有效工具。文章系统介绍了虚拟水的基本概念,并对其目前在我国水资源管理领域的应用做了系统性的阐述和探讨。  相似文献   

7.
This article presents an analysis of the projected performance of urban residential rainwater harvesting systems in the United States (U.S.). The objectives are to quantify for 23 cities in seven climatic regions (1) water supply provided from rainwater harvested at a residential parcel and (2) stormwater runoff reduction from a residential drainage catchment. Water‐saving efficiency is determined using a water‐balance approach applied at a daily time step for a range of rainwater cistern sizes. The results show that performance is a function of cistern size and climatic pattern. A single rain barrel (190 l [50 gal]) installed at a residential parcel is able to provide approximately 50% water‐saving efficiency for the nonpotable indoor water demand scenario in cities of the East Coast, Southeast, Midwest, and Pacific Northwest, but <30% water‐saving efficiency in cities of the Mountain West, Southwest, and most of California. Stormwater management benefits are quantified using the U.S. Environmental Protection Agency Storm Water Management Model. The results indicate that rainwater harvesting can reduce stormwater runoff volume up to 20% in semiarid regions, and less in regions receiving greater rainfall amounts for a long‐term simulation. Overall, the results suggest that U.S. cities and individual residents can benefit from implementing rainwater harvesting as a stormwater control measure and as an alternative source of water.  相似文献   

8.
Romeis, J. Joshua, C. Rhett Jackson, L. Mark Risse, Andrew N. Sharpley, and David E. Radcliffe, 2011. Hydrologic and Phosphorus Export Behavior of Small Streams in Commercial Poultry‐Pasture Watersheds. Journal of the American Water Resources Association (JAWRA) 1‐19. DOI: 10.1111/j.1752‐1688.2011.00521.x Abstract: Few watershed‐scale studies have evaluated phosphorus export in streamflow from commercial poultry‐pasture operations. Continuous streamflow and mixed‐frequency water quality datasets were collected from nine commercial poultry‐pasture (AG) and three forested (FORS) headwater streams (2.4‐44 ha) in the upper Etowah River basin of Georgia to estimate total P (TP) loads and examine variability of hydrologic response and water quality of storm and nonstorm‐flow regimes. Data collection duration ranged from 18 to 22 months, and approximately 1,600 water quality samples were collected. Significant (p < 0.1) inverse relationships were detected between peak flow response variables and both drainage area and fraction of forest cover. Order‐of‐magnitude differences in TP and dissolved reactive P (DRP) concentration were observed between AG and FORS sites and among AG sites. TP yields of FORS sites ranged from 0.01 to 0.1 kg P/ha. Yields of AG sites ranged from 0.031 to 3.17 kg P/ha (median = 0.354 kg P/ha). With 95% confidence intervals, AG yields ranged from 0.025 to 13.1 kg P/ha. These small‐watershed‐scale yields were similar to field‐scale yields measured in other studies in other regions. TP yields were significantly related to area‐weighted Mehlich‐1 soil test P concentrations (p = 0.0073) and base‐flow water sample P concentrations (p 0.0005). Water quality sampling during base‐flow conditions may be a useful screening tool for P risk‐based management programs.  相似文献   

9.
Given the expansion of payments for water‐based ecosystem services (PWES) worldwide, two relevant issues are as follows: (1) determination of efficient allocations of payments among land managers, and (2) how this might change when paying one manager to implement a best management practice (BMP) to enhance an ecosystem service impacts the cost‐effectiveness of BMPs considered by other land managers not currently involved in PWES. Such externalities may be negative if diminishing returns dominate, or positive if mechanisms such as “social diffusion” dominate. We analyze how a planner should optimally allocate payments, depending on whether the expected externalities are negligible, negative, or positive. We employ (1) an optimal control model to gain insights on the problem’s dynamics, and (2) stochastic dynamic programming to determine optimal funding strategies using a specific application. The study contributes to the literature by identifying dynamically optimal PWES payment patterns, and illustrates how they should change when one accounts for externalities induced by the program. Because such impacts have not been addressed previously in a rigorous way, this treatment provides useful value added for PWES design and implementation.  相似文献   

10.
Historically, thermoelectric water withdrawal has been estimated by the Energy Information Administration (EIA) and the U.S. Geological Survey's (USGS) water‐use compilations. Recently, the USGS developed models for estimating withdrawal at thermoelectric plants to provide estimates independent from plant operator‐reported withdrawal data. This article compares three federal datasets of thermoelectric withdrawals for the United States in 2010: one based on the USGS water‐use compilation, another based on EIA data, and the third based on USGS model‐estimated data. The withdrawal data varied widely. Many plants had three different withdrawal values, and for approximately 54% of the plants the largest withdrawal value was twice the smallest, or larger. The causes of discrepancies among withdrawal estimates included definitional differences, definitional noise, and various nondefinitional causes. The uncertainty in national totals can be characterized by the range among the three datasets, from 5,640 m3/s (129 billion gallons per day [bgd]) to 6,954 m3/s (158 bgd), or by the aggregate difference between the smallest and largest values at each plant, from 4,014 m3/s (92 bgd) to 8,590 m3/s (196 bgd). When used to assess the accuracy of reported values, the USGS model estimates identify plants that need to be reviewed.  相似文献   

11.
Best management practices (BMPs) are widely used to mitigate impacts of increased impervious surfaces on stormwater runoff. However, there is limited detailed and up‐to‐date information available on the cost of designing, constructing, and maintaining BMPs over their lifetime. The objective of this study is to analyze BMPs recently constructed by the Virginia Department of Transportation (VDOT) to quantify their total cost per pound of phosphorus removed annually. A motivating factor for the study is recent changes to regulatory guidelines in Virginia which allow for full or partial substitution of purchased nutrient credits in lieu of constructing onsite BMPs to achieve compliance with stormwater quality regulations. Results of the analysis of nine BMPs found their cost ranged from $20,100 to $74,900, in 2014 dollars, per pound ($44,313‐$165,126 per kg) of phosphorus removed. Based on these results and assuming current credit prices procured by VDOT, purchasing nutrient credits is a cost‐effective option for the agency, especially when factoring in the cost of additional right of way for the BMP. Based on this finding, we expect compliance with stormwater quality regulations through credit purchases to become more widely used in Virginia. Moving forward, we suggest more direct tracking of BMP costs to support comparisons between BMP costs across a range of types and conditions to credit purchases for meeting stormwater regulations.  相似文献   

12.
Targeted placement of vegetative buffers may increase their effectiveness for improving water quality in agricultural watersheds. The use of digital elevation models (DEMs) enables precise mapping of runoff pathways for identifying where greater runoff loads can be intercepted and treated with buffers. Five different DEM‐based targeting indexes were compared and contrasted for the degree to which they identify similar locations in watersheds: Flow Accumulation [S.K. Jenson and J.O. Domingue (1988). Photogrammetric Engineering and Remote Sensing 54:1593], Wetness Index [I.D. Moore, R.B. Grayson, and A.R. Ladson (1991). Hydrological Processes 5:3], Topographic Index [M.T. Walter, T.S. Steenhuis, V.K. Mehta, D. Thongs, M. Zion, and E. Schneiderman (2002). Hydrological Processes 16:2041], and the Water Inflow and Sediment Retention Indexes [M.G. Dosskey, Z. Qiu, M.J. Helmers, and D.E. Eisenhauer (2011b). Journal of Soil and Water Conservation 66:362]. The indexes were applied in two different watersheds, one in New Jersey and one in Missouri. Results showed that they all tend to target similar locations in both watersheds which traces to the importance of larger contributing area to the rankings by each index. Disagreement among indexes traces to other variables which enable more accurate targeting under particular hydrologic circumstances. Effective use of these indexes poses special challenges, including selecting an index that better describes the hydrologic circumstances in a watershed and is simple enough to use, ensuring the accuracy of the DEM, and determining a maximum index value for the appropriateness of vegetative buffers. When properly applied, each index can provide a standardized basis and effective spatial resolution for targeting buffer placement in watersheds.  相似文献   

13.
Managed forests generally produce high water quality, but degradation is possible via sedimentation if proper management is not implemented during forest harvesting. To mitigate harvesting effects on total watershed sediment yield, it is necessary to understand all processes that contribute to these effects. Forest harvesting best management practices (BMPs) focus almost exclusively on overland sediment sources, whereas in‐and‐near stream sources go unaddressed although they can contribute substantially to sediment yield. Thus, we propose a new framework to classify forest harvesting effects on stream sediment yield according to their direct and indirect processes. Direct effects are those caused by erosion and sediment delivery to surface water from overland sources (e.g., forest roads). Indirect effects are those caused by a shift in hydrologic processes due to tree removal that accounts for increases in subsurface and surface flows to the stream such that alterations in water quality are not predicated upon overland sediment delivery to the stream, but rather in‐stream processes. Although the direct/indirect distinction is often implicit in forest hydrology studies, we have formalized it as a conceptual model to help identify primary drivers of sediment yield after forest harvesting in different landscapes. Based on a literature review, we identify drivers of these effects in five regions of the United States, discuss current forest management BMPs, and identify research needs.  相似文献   

14.
The Denver Basin Aquifer System (DBAS) is a critical groundwater resource along the Colorado Front Range. Groundwater depletion has been documented over the past few decades due to the increased water use among users, presenting long‐term sustainability challenges. A spatiotemporal geostatistical analysis is used to estimate potentiometric surfaces and evaluate groundwater storage changes between 1990 and 2016 in each of the four DBAS aquifers. Several key depletion patterns and spatial water‐level changes emerge in this work. Hydraulic head changes are the largest in the west‐central side of the DBAS and have decreased in some areas by up to 180 m since 1990, while areas to the northwest show increases in hydraulic head by over 30.5 m. The Denver and Arapahoe aquifers show the largest groundwater storage losses, with the highest rates occurring in the 2000s. The results highlight uncertainty in the volumetric predictions under various storage coefficient calculations and emphasize the importance of representative aquifer characterization. The observed groundwater storage depletions are due to a combination of factors, which include population growth increasing the demand for water, variable precipitation, and drought influencing recharge, and increased groundwater pumping. The methods applied in this study are transferable to other groundwater systems and provide a framework that can help assess groundwater depletion and inform management decisions at other locations.  相似文献   

15.
Water resource management is becoming increasingly challenging in northern China because of the rapid increase in water demand and decline in water supply due to climate change. We provide a case study demonstrating the importance of integrated watershed management in sustaining water resources in Chifeng City, northern China. We examine the consequences of various climate change scenarios and adaptive management options on water supply by integrating the Soil and Water Assessment Tool and Water Evaluation and Planning models. We show how integrated modeling is useful in projecting the likely effects of management options using limited information. Our study indicates that constructing more reservoirs can alleviate the current water shortage and groundwater depletion problems. However, this option is not necessarily the most effective measure to solve water supply problems; instead, improving irrigation efficiency and changing cropping structure may be more effective. Furthermore, measures to increase water supply have limited effects on water availability under a continuous drought and a dry‐and‐warm climate scenario. We conclude that the combined measure of reducing water demand and increasing supply is the most effective and practical solution for the water shortage problems in the study area.  相似文献   

16.
Pressures on water resources due to changing climate, increasing demands, and enhanced recognition of environmental flow needs result in the need for hydrology information to support informed water allocation decisions. However, the absence of hydrometric measurements and limited access to hydrology information in many areas impairs water allocation decision‐making. This paper describes a water balance‐based modeling approach and an innovative web‐based decision‐support hydrology tool developed to address this need. Using high‐resolution climate, vegetation, and watershed data, a simple gridded water balance model, adjusted to account for locational variability, was developed and calibrated against gauged watersheds, to model mean annual runoff. Mean monthly runoff was modeled empirically, using multivariate regression. The modeled annual runoff results are within 20% of the observed mean annual discharge for 78% of the calibration watersheds, with a mean absolute error of 16%. Modeled monthly runoff corresponds well to observed monthly runoff, with a median Nash–Sutcliffe statistic of 0.92 and a median Spearman rank correlation statistic of 0.98. Monthly and annual flow estimates produced from the model are incorporated into a map‐ and watershed‐based decision‐support system referred to as the Northeast Water Tool, to provide critical information to decision makers and others on natural water supply, existing allocations, and the needs of the environment.  相似文献   

17.
Haie, Naim and Andrew A. Keller, 2012. Macro, Meso, and Micro‐Efficiencies in Water Resources Management: A New Framework Using Water Balance. Journal of the American Water Resources Association (JAWRA) 48(2): 235‐243. DOI: 10.1111/j.1752‐1688.2011.00611.x Abstract: One of the most important performance indicators for water resources systems (WRSs) management is efficiency. Here, water balance, based on mass conservation, is utilized to systemically develop three levels of composite efficiency indicators for a WRS, which are configurable based on two types of water totals: total inflow and total consumption (outflow that effectively is not available for reuse). The indices characterize hydrology of an area by including in their formulations the flow dynamics at three integrated levels. Furthermore, the usefulness of water is incorporated into the indicators by defining two weights: one for quality, and the other for beneficial attributes of water use. Usefulness Criterion is the product of quality and beneficial weights, emphasizing the equal significance of the two dimensions. Both of these weights depend on the system itself and the priorities of the supervising organization, which also are shaped by the objectives and values of the given society. These concepts lead to the definition of Macro, Meso, and Micro‐Efficiencies, which form a set of integrated indicators that explicitly promotes stakeholder involvement in evaluation and design of WRSs. Macro, Meso, and Micro‐Efficiencies should be maximized for both water totals, which is an integrated prerequisite for sustainability and is less promoted by competing stakeholders. To demonstrate this new framework, it is applied to published data for urban and agricultural cases and some results are explained.  相似文献   

18.
Integrated water resource management (IWRM) requires accounting for many interrelated facets of water systems, water uses and stakeholders, and water management activities. The consequence is that project analysis must account for the nonseparability among the component parts of IWRM plans. This article presents a benefit‐cost (B‐C) analysis of a set of projects included in the Yakima Basin Integrated Plan proposed for the Yakima Basin in south‐central Washington State. The analysis accounts for interdependence among proposed water storage projects and between water storage and water market development in the context of historical and more adverse projected future climate scenarios. Focusing on irrigation benefits from storage, we show that the value of a given proposed storage project is lower when other proposed storage projects in the basin are implemented, and when water markets are functioning effectively. We find that none of the water storage projects satisfy a B‐C criterion, and that assuring proposed instream flow augmentation is less expensive by purchasing senior diversion rights than relying on new storage to provide it.  相似文献   

19.
Floodplain forests are flood-dependent ecosystems. They rely on well-timed, periodic floods for the provision of regeneration sites and on tapered flood recession curves for the successful establishment of seedlings. These overbank flood events are described as regeneration flows. Once floodplain forest trees are established, in order to grow they also require adequate, although variable, river stage levels or maintenance flows throughout the year. Regeneration flows are often synonymous with flood flows and only occur periodically. There is a disparity between this need for varied interannual flows over the decadal time frame and the usual annual cycle of flow management currently used by most river management agencies. Maintenance flows are often closer to established minimum flows and much easier to provide by current operational practices.A number of environmental flow methodologies, developed in North America, Australia, and South Africa are described in this review. They include the needs of the floodplain environment in the management and allocation of river flows. In North America, these methodologies have been put into practice in a number of river basins specifically to restore floodplain forest ecosystems. In Australia and South Africa, a series of related holistic approaches have been developed that include the needs of floodplain ecosystems as well as in-channel ecosystems. In most European countries, restoration of floodplain forests takes place at a few localized restoration sites, more often as part of a flood-defense scheme and usually not coordinated with flow allocation decisions throughout the river basin. The potential to apply existing environmental flow methodologies to the management of European floodplain forests is discussed.  相似文献   

20.
Campana, Pete, John Knox, Andrew Grundstein, and John Dowd, 2012. The 2007‐2009 Drought in Athens, Georgia, United States: A Climatological Analysis and an Assessment of Future Water Availability. Journal of the American Water Resources Association (JAWRA) 48(2): 379‐390. DOI: 10.1111/j.1752‐1688.2011.00619.x Abstract: Population growth and development in many regions of the world increase the demand for water and vulnerability to water shortages. Our research provides a case study of how population growth can augment the severity of a drought. During 2007‐2009, a drought event that caused extreme societal impacts occurred in the Athens, Georgia region (defined as Clarke, Barrow, Oconee, and Jackson counties). An examination of drought indices and precipitation records indicates that conditions were severe, but not worse than during the 1925‐1927, 1954‐1956, and 1985‐1987 drought events. A drought of similar length to the 2007‐2009 drought would be expected to occur approximately every 25 years. Streamflow analysis shows that discharge levels in area streams were at a record low during 2007 before water restrictions were implemented, because of greater water usage caused by recent population increases. These population increases, combined with a lack of water conservation, led to severe water shortages in the Athens region during late 2007. Only after per capita usage decreased did water resources last despite continuing drought conditions through 2009. Retaining mitigation strategies and withdrawal levels such as seen during the height of the drought will be an essential strategy to prevent water shortages during future extreme drought events. The key mitigation strategy, independent local action to restrict water use in advance of state‐level restrictions, is now prohibited by Georgia State Law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号