共查询到20条相似文献,搜索用时 302 毫秒
1.
Ge Sun Steven G. McNulty Jennifer A. Moore Myers Erika C. Cohen 《Journal of the American Water Resources Association》2008,44(6):1441-1457
Abstract: Assessment of long‐term impacts of projected changes in climate, population, and land use and land cover on regional water resource is critical to the sustainable development of the southeastern United States. The objective of this study was to fully budget annual water availability for water supply (precipitation ? evapotranspiration + groundwater supply + return flow) and demand from commercial, domestic, industrial, irrigation, livestock, mining, and thermoelectric uses. The Water Supply Stress Index and Water Supply Stress Index Ratio were developed to evaluate water stress conditions over time and across the 666 eight‐digit Hydrologic Unit Code basins in the 13 southeastern states. Predictions from two Global Circulation Models (CGC1 and HadCM2Sul), one land use change model, and one human population model, were integrated to project future water supply stress in 2020. We found that population increase greatly stressed water supply in metropolitan areas located in the Piedmont region and Florida. Predicted land use and land cover changes will have little effect on water quantity and water supply‐water demand relationship. In contrast, climate changes had the most pronounced effects on regional water supply and demand, especially in western Texas where water stress was historically highest in the study region. The simulation system developed by this study is useful for water resource planners to address water shortage problems such as those experienced during 2007 in the study region. Future studies should focus on refining the water supply term to include flow exchanges between watersheds and constraints of water quality and environmental flows to water availability for human use. 相似文献
2.
Dennis Ojima Luis Garcia E. Elgaali Kathleen Miller Timothy G. F. Kittel Jill Lackett 《Journal of the American Water Resources Association》1999,35(6):1443-1454
ABSTRACT: This paper reports on the current assessment of climate impacts on water resources, including aquatic ecosystems, agricultural demands, and water management, in the U.S. Great Plains. Climate change in the region may have profound effects on agricultural users, aquatic ecosystems, and urban and industrial users alike. In the central Great Plains Region, the potential impacts of climate changes include changes in winter snowfall and snow-melt, growing season rainfall amounts and intensities, minimum winter temperature, and summer time average temperature. Specifically, results from general circulation models indicate that both annual average temperatures and total annual precipitation will increase over the region. However, the seasonal patterns are not uniform. The combined effect of these changes in weather patterns and average seasonal climate will affect numerous sectors critical to the economic, social and ecological welfare of this region. Research is needed to better address the current competition among the water needs of agriculture, urban and industrial uses, and natural ecosystems, and then to look at potential changes. These diverse demands on water needs in this region compound the difficulty in managing water use and projecting the impact of climate changes among the various critical sectors in this region. 相似文献
3.
Kenneth D. Frederick Gregory E. Schwarz 《Journal of the American Water Resources Association》1999,35(6):1563-1583
ABSTRACT: A greenhouse warming would have major effects on water supplies and demands. A framework for examining the socioeconomic impacts associated with changes in the long-term availability of water is developed and applied to the hydrologic implications of the Canadian and British Hadley2 general circulation models (GCMs) for the 18 water resource regions in the conterminous United States. The climate projections of these two GCMs have very different implications for future water supplies and costs. The Canadian model suggests most of the nation would be much drier in the year 2030. Under the least-cost management scenario the drier climate could add nearly $105 billion to the estimated costs of balancing supplies and demands relative to the costs without climate change. Measures to protect instream flows and irrigation could result in significantly higher costs. In contrast, projections based on the Hadley model suggest water supplies would increase throughout much of the nation, reducing the costs of balancing water supplies with demands relative to the no-climate-change case. 相似文献
4.
Randall T. Hanson Michael D. Dettinger 《Journal of the American Water Resources Association》2005,41(3):517-536
ABSTRACT: Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa Clara‐Calleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate‐driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/°C, compared to 0.9 m/°C in observations. This close agreement shows that the GCM‐RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM‐RGWM combination could be used for planning purposes and — when the GCM forecast skills are adequate — for near term predictions. 相似文献
5.
C. Rhett Jackson Seth J. Wenger Brian P. Bledsoe J. Marshall Shepherd Krista A. Capps Amy D. Rosemond Michael J. Paul Meredith Welch-Devine Ke Li Timothy Stephens Todd C. Rasmussen 《Journal of the American Water Resources Association》2023,59(5):1146-1161
Rapidly growing cities along the Interstate-85 corridor from Atlanta, GA, to Raleigh, NC, rely on small rivers for water supply and waste assimilation. These rivers share commonalities including water supply stress during droughts, seasonally low flows for wastewater dilution, increasing drought and precipitation extremes, downstream eutrophication issues, and high regional aquatic diversity. Further challenges include rapid growth; sprawl that exacerbates water quality and infrastructure issues; water infrastructure that spans numerous counties and municipalities; and large numbers of septic systems. Holistic multi-jurisdiction cooperative water resource planning along with policy and infrastructure modifications is necessary to adapt to population growth and climate. We propose six actions to improve water infrastructure resilience: increase water-use efficiency by municipal, industrial, agricultural, and thermoelectric power sectors; adopt indirect potable reuse or closed loop systems; allow for water sharing during droughts but regulate inter-basin transfers to protect aquatic ecosystems; increase nutrient recovery and reduce discharges of carbon and nutrients in effluents; employ green infrastructure and better stormwater management to reduce nonpoint pollutant loadings and mitigate urban heat island effects; and apply the CRIDA framework to incorporate climate and hydrologic uncertainty into water planning. 相似文献
6.
7.
Kenneth M. Strzepek David C. Major Cynthia Rosenzweig Ana Iglesias David N. Yates Alyssa Holt Daniel Hillel 《Journal of the American Water Resources Association》1999,35(6):1639-1655
ABSTRACT: This paper reports on new methods of linking climate change scenarios with hydrologic, agricultural an water planning models to study future water availability for agriculture, an essential element of sustainability. The study is based on the integration of models of water supply and demand, and of crop growth and irrigation management. Consistent modeling assumptions, available databases, and scenario simulations are used to capture a range of possible future conditions. The linked models include WATBAL for water supply; CERES, SOYGRO, and CROPWAT for crop and irrigation modeling; and WEAP for water demand forecasting, planning and evaluation. These models are applied to the U.S. Cornbelt using forecasts of climate change, agricultural production, population and GDP growth. Results suggest that, at least in the near term, the relative abundance of water for agriculture can be maintained under climate change conditions. However, increased water demands from urban growth, increases in reservoir evaporation and increases in crop consumptive use must be accommodated by timely improvements in crop, irrigation and drainage technology, water management, and institutions. These improvements are likely to require substantial resources and expertise. In the highly irrigated basins of the region, irrigation demand greatly exceeds industrial and municipal demands. When improvements in irrigation efficiency are tested, these basins respond by reducing demand and lessening environmental stress with an improvement in system reliability, effects particularly evident under a high technology scenario. Rain-fed lands in the Cornbelt are not forced to invest in irrigation, but there is some concern about increased water-logging during the spring and consequent required increased investment in agricultural drainage. One major water region in the Cornbelt also provides a useful caveat: change will not necessarily be continuous and monotonic. Under one GCM scenario for the 2010s, the region shows a significant decrease in system reliability, while the scenario for the 2020s shows an increase. 相似文献
8.
张丽彬 《中国环境管理干部学院学报》2006,16(3):11-12,19
乐亭县地处滨海,农业用水效率低,加之上游连年缺水,造成田间荒芜撂荒现象严重.乐亭县是农业大县,工业相对薄弱,掀起一场提高农业用水效率的革命势在必行.主要途径:大力推进节水灌溉制度,调整农业种植结构,积极引进、开发、培育节水高产品种,减少无效蒸发,节水高产施肥、培肥技术. 相似文献
9.
Ridwan Siddique Richard Palmer 《Journal of the American Water Resources Association》2021,57(1):75-95
This study investigates the potential impacts of climate change on future flows in the main stem of the Connecticut and Merrimack rivers within Massachusetts. The study applies two common climate projections based on (Representative Concentration Pathways), RCP 4.5 and RCP 8.5 and downscaled gridded climate projections from 14 global climate models (GCMs) to estimate the 100‐year, 24‐h extreme precipitation events for two future time‐periods: near‐term (2021–2060) and far‐term (2060–2099). 100‐year 24‐h precipitation events at near‐ and far‐term are compared to GCM‐driven historical extreme precipitation events during a base period (1960–1999) and results for RCP 8.5 scenario show average increases between 25%–50% during the near‐term compared to the base period and increases of over 50% during the far‐term. Streamflow conditions are generated with a distributed hydrological model where downscaled climate projections are used as inputs. For the near‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest 2.9%–8.1% increases in the 100‐year, 24‐h flow event in the Connecticut and an increase of 9.9%–13.7% in the Merrimack River. For the far‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest a 9.0%–14.1% increase in the Connecticut and 15.8%–20.6% for the Merrimack River. Ultimately, the results presented here can be used as a guidance for the long‐term management of infrastructures on the Connecticut and Merrimack River floodplains. 相似文献
10.
Mark A. Snyder Lisa C. Sloan Jason L. Bell 《Journal of the American Water Resources Association》2004,40(3):591-601
ABSTRACT: Using a regional climate model (RegCM2.5), the potential impacts on the climate of California of increasing atmospheric CO2 concentrations were explored from the perspective of the state's 10 hydrologic regions. Relative to preindustrial CO2 conditions (280 ppm), doubled preindustrial CO2 conditions (560 ppm) produced increased temperatures of up to 4°C on an annual average basis and of up to 5°C on a monthly basis. Temperature increases were greatest in the central and northern regions. On a monthly basis, the temperature response was greatest in February, March, and May for nearly all regions. Snow accumulation was significantly decreased in all months and regions, with the greatest reduction occurring in the Sacramento River region. Precipitation results indicate drier winters for all regions, with a large reduction in precipitation from December to April and a smaller decrease from May to November. The result is a wet season that is slightly reduced in length. Findings suggest that the total amount of water in the state will decrease, water needs will increase, and the timing of water availability will be greatly perturbed. 相似文献
11.
Gregory J. McCabe Mark A. Ayers 《Journal of the American Water Resources Association》1989,25(6):1231-1242
ABSTRACT: The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2°C; a 15 percent increase for a warming of 4°C. A warming of 2° to 4°C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from ?39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. In this humid temperate climate, where precipitation is evenly distributed over the year, decreases in snow accumulation in the northern part of the basin and increases in evapotranspiration throughout the basin could change the timing of runoff and significantly reduce total annual water availability unless precipitation were to increase concurrently. 相似文献
12.
Ryan C. Johnson;Steven J. Burian;James Halgren;Trevor Irons;Emily Baur;Danyal Aziz;Daniyal Hassan;Jiada Li;Tracie Kirkham;Jessie Stewart;Laura Briefer; 《Journal of the American Water Resources Association》2024,60(1):211-225
Seasonality and a changing climate exert strong influences on supply and demand in the western United States, challenging municipal water system (MWS) management. Although supply and demand exhibit characteristics of nonstationarity, the commonly used econometric-based models to estimate demands discount the influences of climate variability and trends in seasonal MWS vulnerability assessments. Given the projected impacts of climate change on water resources, we use the documented performance of a real-world MWS with a calibrated systems model to investigate how demands modeled with and without the influences of climate impact system vulnerability indicators—determined by the exceedance of historical daily mean imported water—for MWS planning guidance. Neglecting climatic influences on MWS demands, the model overestimates the volume of imported water by up to 50% and misclassifies vulnerabilities during supply-limiting conditions. The climate-sensitive demand estimates reduced model error (i.e., <3% error) and correctly categorized vulnerabilities. Moreover, the MWS exhibited an average threefold greater sensitivity to percent changes in demand relative to percent changes in supply. The sensitivity to variances in demand emphasizes the need to account for factors influencing supply and demand when investigating the impacts of a changing climate, suggesting future research to examine the coupled influences of modeled supply and demand accuracy on MWS performance. 相似文献
13.
Derek Winstanley Stanley A. Changnon 《Journal of the American Water Resources Association》1999,35(6):1421-1427
ABSTRACT: An analysis of historical relationships between seasonal weather conditions and water resource conditions in Illinois provides insights to the challenges of projecting such relationships under conditions of climate change. In Illinois for 1901–1997 there were major temporal shifts in types of seasonal conditions that have positive and negative effects on surface water and ground water supplies and their quality. Major seasonal effects came in the spring and summer seasons and when either wet-and-warm or dry-and-warm weather conditions prevailed in either season. Sixty percent of the summer seasons creating negative impacts occurred during only 40 years: 1911–1940 and 1951–1960. Seasons creating impacts relate well to the frequency of cyclone passages and to the incidence of El Niño or La Niña conditions. This reveals that future climate fluctuations that shift the frequency of cyclones and/or ENSO events will have profound effects on Midwestern seasonal conditions that affect water resources. Projecting future effects of climate change on water resources will need to consider how shifts in water use and water management technologies act to re-define the seasonal weather conditions that are critical. 相似文献
14.
R.D. Kreutzwiser R.B. Feagan 《Journal of the American Water Resources Association》1989,25(3):667-674
ABSTRACT: Managing the demand for municipal water supply has become a viable alternative or supplement to traditional supply management responses. Though senior governments in Canada are committed to the concept, there is a lack of knowledge concerning the level of use of the demand management concept and little promotion of water conservation. This paper assesses the extent of the use of this concept as it applies to municipal water supply across southern Ontario and examines factors that influence the variation in use of water conservation strategies. Information from 219 municipalities revealed that the concept is not in wide use in southern Ontario and that existing variation can be partially explained by the extent of problems experienced and the population size served by the municipal water supply system. Suggestions for increasing municipal use of the demand management concept are offered. 相似文献
15.
Alex Pupacko 《Journal of the American Water Resources Association》1993,29(2):283-290
ABSTRACT: Historical records of streamflow for an eastward- and a westward-draining stream in the northern Sierra Nevada have been analyzed for evidence of changes in runoff characteristics and patterns of variability. A trend of increasing and more variable winter streamflow began in the mid-1960s. Mean monthly streaniflow during December through March was substantially greater for water years 1965–1990 compared to water years 1939–1964. Increased winter and early-spring streamflow during the later period is attributed to small increases in temperature, which increase the rain-to-snow ratio at lower altitudes and cause the snowpack to melt earlier in the season at higher altitudes. The timing of snowmelt runoff on the western slope of the Sierra Nevada is more sensitive than it is on the eastern slope to changes in temperature, owing to predominantly lower altitudes on the west side. This difference in sensitivity suggests that basins on the east side of the Sierra Nevada have a more reliable water supply (as snow storage) than western-slope basins during warming trends. 相似文献
16.
Chad Furl H.O. Sharif Muhammad Alzahrani Almoutaz El Hassan Newfel Mazari 《Journal of the American Water Resources Association》2014,50(1):74-82
This study examines precipitation accumulation and intensity trends across a region in southwest Saudi Arabia characterized by distinct seasonal weather patterns and mountainous terrain. The region is an example of an arid/semiarid area faced with maintaining sustainable water resources with a growing population. Annual and seasonal trends in precipitation amount were examined from 29 rain gages divided among four geographically unique regions from 1945/1946 to 2009. Two of the regions displayed significantly declining annual trends over the time series using a Mann‐Kendall test modified for autocorrelation (α < 0.05). Seasonal analysis revealed insignificant declining trends in at least two of the regions during each season. The largest and most consistent declining trends occurred during wintertime where all regions experienced negative trends. Several intensity metrics were examined in the study area from four additional stations containing daily data from 1985 to 2011. Intensity metrics included total precipitation, wet day count, simple intensity index, maximum daily annual rainfall, and upper/lower precipitation distribution changes. In general, no coherent trends were found among the daily stations suggesting precipitation is intensifying across the study area. The work represents the first of its size in the study area, and one of few in the region due to the lack of available long‐term data needed to properly examine precipitation changes. 相似文献
17.
The potential impacts driven by climate variability and urbanization in the Boise River Watershed (BRW), located in southwestern Idaho, are evaluated. The outcomes from Global Circulation Models (GCMs) and land use and land cover (LULC) analysis have been incorporated into a hydrological and environmental modeling framework to characterize how climate variability and urbanization can affect the local hydrology and environment at the BRW. The combined impacts of future climate and LULC change are also evaluated relative to the historical baseline conditions. For modeling exercises, Hydrological Simulation Program‐Fortran (HSPF) is used in parallel computing and statistical techniques, including spatial downscaling and bias correlation, are employed to evaluate climate consequences derived from GCMs as well. The implications of climate variability and land use change driven by urbanization are then observed to evaluate how these overall global challenges can affect water quantity and quality conditions at the BRW. The results show the combined impacts of both climate change and urbanization can lead to more seasonal variability of streamflow (from ?27.5% to 12.5%) and water quality, including sediment (from ?36.5% to 49.3%), nitrogen (from ?24% to 124.2%), and phosphorus (from ?13.3% to 21.2%) during summer and early fall over the next several decades. 相似文献
18.
James F. Cruise Ashutosh S. Limaye Nassim Al-Abed 《Journal of the American Water Resources Association》1999,35(6):1539-1550
ABSTRACT: An assessment of current and future water quality conditions in the southeastern United States has been conducted using the EPA BASINS GIS/database system. The analysis has been conducted for dissolved oxygen, total nitrate nitrogen and pH. Future streamflow conditions have been predicted for the region based on the United Kingdom Hadley Center climate model. Thus far, the analyses have been conducted at a fairly coarse spatial scale due to time and resource limitations. Two hydrologic modeling techniques have been employed in future streamflow prediction: a regional stochastic approach and the application of a physically based soil moisture model. The regional model has been applied to the entire area while the physically based model is being used at selected locations to enhance and support the stochastic model. The results of the study reveal that few basins in the southeast exhibit dissolved oxygen problems, but that several watersheds exhibit high nitrogen levels. These basins are located in regions of intense agricultural activity or in proximity to the gulf coast. In many of these areas, streamflow is projected to decline over the next 30–50 years, thus exacerbating these water quality problems. 相似文献
19.
Harry F Lins Eugene Z. Stakhiv 《Journal of the American Water Resources Association》1998,34(6):1255-1264
ABSTRACT: Among the many concerns associated with global climate change, the potential effects on water resources are frequently cited as the most worrisome. In contrast, those who manage water resources do not rate climatic change among their top planning and operational concerns. The difference in these views can be associated with how water managers operate their systems and the types of stresses, and the operative time horizons, that affect the Nation's water resources infrastructure. Climate, or more precisely weather, is an important variable in the management of water resources at daily to monthly time scales because water resources systems generally are operated on a daily basis. At decadal to centennial time scales, though, climate is much less important because (1) forecasts, particularly of regional precipitation, are extremely uncertain over such time periods, and (2) the magnitude of effects due to changes in climate on water resources is small relative to changes in other variables such as population, technology, economics, and environmental regulation. Thus, water management agencies find it difficult to justify changing design features or operating rules on the basis of simulated climatic change at the present time, especially given that reservoir-design criteria incorporate considerable buffering capacity for extreme meteorological and hydro-logical events. 相似文献
20.
Future climate change is a source of growing concerns for the supply of energy and resources, and it may have significant impacts on industry and the economy. Major effects are likely to arise from changes to the freshwater resources system, due to the connection of energy generation to these water systems. Using future climate data downscaled by a stochastic weather generator, this study investigates the potential impacts of climate change on long‐term reservoir operations at the Chungju multipurpose dam in South Korea, specifically considering the reliability of the supply of water and hydropower. A reservoir model, Hydrologic Engineering Center‐Reservoir System Simulation (HEC‐ResSim), was used to simulate the ability of the dam to supply water and hydropower under different conditions. The hydrologic model Soil and Water Assessment Tool was used to determine the HEC‐ResSim boundary conditions, including daily dam inflow from the 6,642 km2 watershed into the 2.75 Gm3 capacity reservoir. Projections of the future climate indicate that temperature and precipitation during 2070‐2099 (2080s) show an increase of +4.1°C and 19.4%, respectively, based on the baseline (1990‐2009). The results from the models suggest that, in the 2080s, the average annual water supply and hydropower production would change by +19.8 to +56.5% and by +33.9 to 92.3%, respectively. Model simulations suggest that under the new climatic conditions, the reliability of water and hydropower supply would be generally improved, as a consequence of increased dam inflow. 相似文献