首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental Tests of Captive Breeding for Endangered Species   总被引:3,自引:0,他引:3  
Abstract: Several captive breeding regimes were compared for their ability to maintain fitness ( larval viability) and genetic variation in small populations of the housefly ( Musca domestica L.). Populations were either maintained at constant sizes of 40, 200, or 2000 individuals or initiated with two pairs of flies and allowed to grow to 40 individuals ( low-founder-number populations). Low-founder-number populations without migration exhibited low larval viability (22%) after 24 generations, compared to larger populations maintained at either 200 (49%) or 2000 (69%) individuals, and suffered high extinction, with only 44% of the lines surviving 24 generations. Low-founder-number populations subjected to two additional founder ( bottleneck) episodes, reducing them to two pairs of flies, suffered little additional loss in fitness or extinction compared to the single-founder treatments. Migration as low as one individual per generation (2.5% migration) significantly offset both reduced fitness and rate of extinction. Conversely, fitness was not significantly increased for low-founder-number populations when founders were selected from the top performing 20% of pairs under full-sib mating. Populations maintained at 40 individuals were not sustainable, exhibiting low larval viability (35%) and a high extinction rate (40%) over 24 generations, similar to the extinction rates for populations initiated with only four founders. Although none of the populations maintained at 200 individuals went extinct, their fitness was reduced by 20% compared to a large control population maintained at 2000 individuals. Electrophoretic variation was significantly correlated with fitness across treatments, but the correlation of fitness to narrow-sense heritability of two morphometric traits was not significant.  相似文献   

2.
Equalization of family sizes is recommended for use in captive breeding programs, as it is predicted to double effective population sizes, reduce inbreeding, and slow the loss of genetic variation. The effects of maintaining small captive populations with equalization of family sizes versus random choice of parents on levels of inbreeding genetic variation, reproductive fitness, and effective population sizes ( N e) were evaluated in 10 lines of each treatment maintained with four pairs of parents per generation. The mean inbreeding coefficient ( F ) increased at a significantly slower rate with equalization than with random choice (means of 0.35 and 0.44 at generation 10). Average heterozygosities at generation 10, based on six polymorphic enzyme loci, were significantly higher with equalization (0.149) than with random choice (0.085), compared to the generation 0 level of 0.188. The competitive index measure of reproductive fitness at generation 11 was more than twice as high with equalization as with random choice, both being much lower than in the outbred base population. There was considerable variation among replicate lines within treatments in all the above measures and considerable overlap between lines from the two treatments. Estimates of N e for equalization were greater than those for random choice, whether estimated from changes in average heterozygosities or from changes in F. Equalization of family sizes can be unequivocally recommended for use in the genetic management of captive populations.  相似文献   

3.
 In species vulnerable to both inbreeding and outbreeding depression, individuals might be expected to choose mates at intermediate levels of genetic relatedness. Previous work on the intertidal copepod Tigriopus californicus has repeatedly shown that crosses between populations result in either no effect or hybrid vigor in the first generation, and hybrid breakdown in the second generation. Previous work also shows that mating between full siblings results in inbreeding depression. The present study again found inbreeding depression, with full sibling mating causing significant fitness declines in two of the three populations assayed. In the mate choice assays, a single female was combined with two males. Despite the costs of both inbreeding and outbreeding, mate choice showed clear inbreeding avoidance but no clear pattern of outbreeding avoidance. This lack of outbreeding avoidance may be attributed either to the temporary increase in fitness in the F1 generation or to the absence of selection for premating isolation in wholly allopatric populations with infrequent migration. If this inability to avoid unwise matings is common to other taxa, it may contribute to the problem of outbreeding depression when allopatric populations are mixed together. Received: 18 May 1999 / Accepted: 25 January 2000  相似文献   

4.
Abstract: A rich theory has been developed to explain the evolution of populations at equilibrium conditions of gene flow, inbreeding, and selection. There are, however, few empirical examples of the effects of gene flow into recently isolated, small populations under nonequilibrium conditions, such as are expected following population fragmentation. We studied the effects of inbreeding and gene flow in small, experimental populations of the mustard Brassica campestris ( rapa ). Replicate populations of five individuals randomly mated in a growth room received treatments of 0, 1, or 2.5 migrants each generation. Plants from the sixth experimental generation were planted in an outdoor common garden to evaluate the effects of the treatments on fitness and the distribution of phenotypic variation. Regression of six fitness components on inbreeding coefficients indicated a negative effect of inbreeding on fitness for five of these components. The 0-migrant treatment had significantly lower fitness than the migrant treatments for four of six fitness components, but fitness did not differ between the 1-migrant and 2.5-migrant treatments. Phenotypic divergence among populations decreased with an increased number of migrants. These data provide empirical evidence of the beneficial fitness effects of a small number of migrants for recently fragmented populations.  相似文献   

5.
Abstract: Disruption of gene flow among demes after landscape fragmentation can facilitate local adaptation but increase the effect of genetic drift and inbreeding. The joint effects of these conflicting forces on the mean fitness of individuals in a population are unknown. Through simulations, we explored the effect of increased isolation on the evolution of genetic load over the short and long term when fitness depends in part on local adaptation. We ignored genetic effects on demography. We modeled complex genomes, where a subset of the loci were under divergent selection in different localities. When a fraction of the loci were under heterogeneous selection, isolation increased mean fitness in larger demes made up of hundreds of individuals because of improved local adaptation. In smaller demes of tens of individuals, increased isolation improved local adaptation very little and reduced overall fitness. Short‐term improvement of mean fitness after fragmentation may not be indicative of the long‐term evolution of fitness. Whatever the deme size and potential for local adaptation, migration of one or two individuals per generation minimized the genetic load in general. The slow dynamics of mean fitness following fragmentation suggests that conservation measures should be implemented before the consequences of isolation on the genetic load become of concern.  相似文献   

6.
Abstract: Studies evaluating the impact of inbreeding depression on population viability of threatened species tend to focus on the effects of inbreeding at a single life‐history stage (e.g., juvenile survival). We examined the effects of inbreeding across the full life‐history continuum, from survival up to adulthood, to subsequent reproductive success, and to the recruitment of second‐generation offspring, in wild Takahe ( Porphyrio hochstetteri ) by analyzing pedigree and fitness data collected over 21 breeding seasons. Although the effect size of inbreeding at individual life‐history stages was small, inbreeding depression accumulated across multiple life‐history stages and ultimately reduced long‐term fitness (i.e., successful recruitment of second‐generation offspring). The estimated total lethal equivalents (2B) summed across all life‐history stages were substantial (16.05, 95% CI 0.08–90.8) and equivalent to an 88% reduction in recruitment of second‐generation offspring for closely related pairs (e.g., sib–sib pairings) relative to unrelated pairs (according to the pedigree). A history of small population size in the Takahe could have contributed to partial purging of the genetic load and the low level of inbreeding depression detected at each single life‐history stage. Nevertheless, our results indicate that such “purged” populations can still exhibit substantial inbreeding depression, especially when small but negative fitness effects accumulate across the species’ life history. Because inbreeding depression can ultimately affect population viability of small, isolated populations, our results illustrate the importance of measuring the effects of inbreeding across the full life‐history continuum.  相似文献   

7.
Abstract: Both inbreeding and environmental stress can have adverse effects on fitness that affect the conservation of endangered species. Two important issues are whether stress and inbreeding effects are independent as opposed to synergistic, and whether inbreeding effects are general across stresses as opposed to stress-specific. We found that inbreeding reduced resistance to acetone and desiccation in adult Drosophila melanogaster , whereas resistance to knockdown heat stress was not affected. Inbred flies, however, experienced a greater proportional decrease in productivity than outbreds following heat stress. Correlations using line means indicated that all resistance traits were uncorrelated in the inbred as well as in the outbred flies. Recessive, deleterious alleles therefore did not appear to have any general deleterious effects on stress resistance. Inbreeding within a specific environment and selection for resistant genotypes may therefore purge a population of deleterious genes specific to only one environmental stress.  相似文献   

8.
Relationship between Population Size and Fitness   总被引:8,自引:1,他引:8  
Abstract:  Long-term effective population size, which determines rates of inbreeding, is correlated with population fitness. Fitness, in turn, influences population persistence. I synthesized data from the literature concerning the effects of population size on population fitness in natural populations of plants to determine how large populations must be to maintain levels of fitness that will provide adequate protection against environmental perturbations that can cause extinction. Integral to this comment on what has been done and what needs to be done, sThe evidence suggests that there is a linear relationship between log population size and population fitness over the range of population sizes examined. More importantly, populations will have to be maintained at sizes of >2000 individuals to maintain population fitness at levels compatible with the conservation goal of long-term persistence. This approach to estimating minimum viable population size provides estimates that are in general agreement with those from numerous other studies and strengthens the argument that conservation efforts should ultimately aim at maintaining populations of several thousand individuals to ensure long-term persistence.  相似文献   

9.
Abstract:  Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel ( Falco punctatus ) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N eI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N eV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.  相似文献   

10.
Inbreeding depression is environmentally dependent, such that a population may suffer from inbreeding depression in one environment but not another. We examined the phenotypic responses of 35 inbred ( F = 0.672) lineages of the red flour beetle Tribolium castaneum in two different climatic environments. We found a significant environmental effect on males but not females. More important, we found that the rank fitness order of lineages differs between environments; lineages of high fitness in one environment may have low fitness in another environment. This change in rank is evident in a significant genotype-by-environment interaction for inbreeding depression for both females and males. These results suggest that even if we know the average environmental effect of inbreeding depression in a population, for any particular lineage measurements of inbreeding depression in one environment may not predict the level of inbreeding depression in another environment. Conservation biologists need to be aware of the environmental dependency of inbreeding depression when planning wildlife refuges or captive propagation programs for small populations. Ideally, captive propagation programs should maintain separate lineages for release efforts. Refuge design programs should consider maintaining a range of habitat types.  相似文献   

11.
Inbreeding in a lek-mating ant species, Pogonomyrmex occidentalis   总被引:1,自引:0,他引:1  
In this paper we have two goals. First, we examine the effects of sample size on the statistical power to detect a given amount of inbreeding in social insect populations. The statistical power to detect a given level of inbreeding is largely a function of the number of colonies sampled. We explore two sampling schemes, one in which a single individual per colony is sampled for different sample sizes and a second sampling scheme in which constant sampling effort is maintained (the product of the number of colonies and the number of workers per colony is constant). We find that adding additional workers to a sample from a colony makes it easier to detect inbreeding in samples from given number of colonies; however, adding more colonies rather than more workers per colony always gives greater power to detect inbreeding. Because even relatively large amounts of sib-mating generate relatively small inbreeding coefficients, detection of even substantial deviations from random mating will require very large samples. Second, we look at the amount of inbreeding in a large population of the western harvest ant, Pogonomyrmex occidentalis. We find deviations from Hardy-Weinberg equilibrium equivalent to approximately 27% sib-mating in our population ( f = 0.09). Review of past studies on the population structure of other Pogonomyrmex species suggests that inbreeding may be a regular feature of the mating system of these ants. Although P. occidentalisis a swarm-mating species, there are a number of features of its population biology which suggest that the effective population size may be small. These include topographical variation that potentially breaks the population into demes, variation in the reproductive output of colonies, and variation in the size of reproductives produced by colonies. Received: 6 May 1996 / Accepted after revision: 6 October 1996  相似文献   

12.
Abstract:  Human-induced habitat fragmentation constitutes a major threat to biodiversity. Both genetic and demographic factors combine to drive small and isolated populations into extinction vortices. Nevertheless, the deleterious effects of inbreeding and drift load may depend on population structure, migration patterns, and mating systems and are difficult to predict in the absence of crossing experiments. We performed stochastic individual-based simulations aimed at predicting the effects of deleterious mutations on population fitness (offspring viability and median time to extinction) under a variety of settings (landscape configurations, migration models, and mating systems) on the basis of easy-to-collect demographic and genetic information. Pooling all simulations, a large part (70%) of variance in offspring viability was explained by a combination of genetic structure ( FST ) and within-deme heterozygosity ( HS ). A similar part of variance in median time to extinction was explained by a combination of local population size ( N ) and heterozygosity ( HS ). In both cases the predictive power increased above 80% when information on mating systems was available. These results provide robust predictive models to evaluate the viability prospects of fragmented populations.  相似文献   

13.
The relation among inbreeding, heterozygosity, and fitness has been studied primarily among outbred populations, and little is known about these phenomena in endangered populations. Most researchers conclude that the relation between coefficient of inbreeding estimated from pedigrees and fitness traits (inbreeding‐fitness correlations) better reflects inbreeding depression than the relation between marker heterozygosity and fitness traits (heterozygosity‐fitness correlations). However, it has been suggested recently that heterozygosity‐fitness correlations should only be expected when inbreeding generates extensive identity disequilibrium (correlations in heterozygosity and homozygosity across loci throughout the genome). We tested this hypothesis in Mohor gazelle (Gazella dama mhorr) and Iberian lynx (Lynx pardinus). For Mohor gazelle, we calculated the inbreeding coefficient and measured heterozygosity at 17 microsatellite loci. For Iberian lynx, we measured heterozygosity at 36 microsatellite loci. In both species we estimated semen quality, a phenotypic trait directly related to fitness that is controlled by many loci and is affected by inbreeding depression. Both species showed evidence of extensive identity disequilibrium, and in both species heterozygosity was associated with semen quality. In the Iberian lynx the low proportion of normal sperm associated with low levels of heterozygosity was so extreme that it is likely to limit the fertility of males. In Mohor gazelle, although heterozygosity was associated with semen quality, inbreeding coefficient was not. This result suggests that when coefficient of inbreeding is calculated on the basis of a genealogy that begins after a long history of inbreeding, the coefficient of inbreeding fails to capture previous demographic information because it is a poor estimator of accumulated individual inbreeding. We conclude that among highly endangered species with extensive identity disequilibrium, examination of heterozygosity‐fitness correlations may be an effective way to detect inbreeding depression, whereas inbreeding‐fitness correlations may be poor indicators of inbreeding depression if the pedigree does not accurately reflect the history of inbreeding. Correlaciones Heterocigosidad‐ Adaptabilidad y Depresión Endogámica en Dos Especies de Mamíferos Críticamente en Peligro  相似文献   

14.
Infectious diseases are increasingly recognized as an important force driving population dynamics, conservation biology, and natural selection in wildlife populations. Infectious agents have been implicated in the decline of small or endangered populations and may act to constrain population size, distribution, growth rates, or migration patterns. Further, diseases may provide selective pressures that shape the genetic diversity of populations or species. Thus, understanding disease dynamics and selective pressures from pathogens is crucial to understanding population processes, managing wildlife diseases, and conserving biological diversity. There is ample evidence that variation in the prion protein gene (PRNP) impacts host susceptibility to prion diseases. Still, little is known about how genetic differences might influence natural selection within wildlife populations. Here we link genetic variation with differential susceptibility of white-tailed deer to chronic wasting disease (CWD), with implications for fitness and disease-driven genetic selection. We developed a single nucleotide polymorphism (SNP) assay to efficiently genotype deer at the locus of interest (in the 96th codon of the PRNP gene). Then, using a Bayesian modeling approach, we found that the more susceptible genotype had over four times greater risk of CWD infection; and, once infected, deer with the resistant genotype survived 49% longer (8.25 more months). We used these epidemiological parameters in a multi-stage population matrix model to evaluate relative fitness based on genotype-specific population growth rates. The differences in disease infection and mortality rates allowed genetically resistant deer to achieve higher population growth and obtain a long-term fitness advantage, which translated into a selection coefficient of over 1% favoring the CWD-resistant genotype. This selective pressure suggests that the resistant allele could become dominant in the population within an evolutionarily short time frame. Our work provides a rare example of a quantifiable disease-driven selection process in a wildlife population, demonstrating the potential for infectious diseases to alter host populations. This will have direct bearing on the epidemiology, dynamics, and future trends in CWD transmission and spread. Understanding genotype-specific epidemiology will improve predictive models and inform management strategies for CWD-affected cervid populations.  相似文献   

15.
Common shrews (Sorex araneus) maintain a foraging territory for most of their immature life. Possessing a high-quality territory is vital for overwinter survival in the harsh boreal climate, and hence, competitive ability in territorial disputes is expected to be an important component of individual fitness. To test possible association between individual inbreeding and fitness, we used neutral arena trials to assess the competitive performance of young common shrews. The experiment involved pairs of individuals originating from small island populations, where breeding must often occur between related individuals, and from large outbred mainland populations. The percentage of neutral arena tests that an individual won was highly significantly explained by internal relatedness, a surrogate measure of individual inbreeding, measured using ten microsatellite markers. Body size, sex, learning, and population type (mainland vs island) made no significant contributions. Even a low level of individual inbreeding may lead to significant adverse consequences in multiple territorial contests, which may represent a significant cause of inbreeding depression in many wild vertebrate populations.  相似文献   

16.
Evidence of inbreeding depression is commonly detected from the fitness traits of animals, yet its effects on population growth rates of endangered species are rarely assessed. We examined whether inbreeding depression was affecting Sierra Nevada bighorn sheep (Ovis canadensis sierrae), a subspecies listed as endangered under the U.S. Endangered Species Act. Our objectives were to characterize genetic variation in this subspecies; test whether inbreeding depression affects bighorn sheep vital rates (adult survival and female fecundity); evaluate whether inbreeding depression may limit subspecies recovery; and examine the potential for genetic management to increase population growth rates. Genetic variation in 4 populations of Sierra Nevada bighorn sheep was among the lowest reported for any wild bighorn sheep population, and our results suggest that inbreeding depression has reduced adult female fecundity. Despite this population sizes and growth rates predicted from matrix-based projection models demonstrated that inbreeding depression would not substantially inhibit the recovery of Sierra Nevada bighorn sheep populations in the next approximately 8 bighorn sheep generations (48 years). Furthermore, simulations of genetic rescue within the subspecies did not suggest that such activities would appreciably increase population sizes or growth rates during the period we modeled (10 bighorn sheep generations, 60 years). Only simulations that augmented the Mono Basin population with genetic variation from other subspecies, which is not currently a management option, predicted significant increases in population size. Although we recommend that recovery activities should minimize future losses of genetic variation, genetic effects within these endangered populations-either negative (inbreeding depression) or positive (within subspecies genetic rescue)-appear unlikely to dramatically compromise or stimulate short-term conservation efforts. The distinction between detecting the effects of inbreeding depression on a component vital rate (e.g., fecundity) and the effects of inbreeding depression on population growth underscores the importance of quantifying inbreeding costs relative to population dynamics to effectively manage endangered populations.  相似文献   

17.
Captive‐breeding programs can be implemented to preserve the genetic diversity of endangered populations such that the controlled release of captive‐bred individuals into the wild may promote recovery. A common difficulty, however, is that programs are founded with limited wild broodstock, and inbreeding can become increasingly difficult to avoid with successive generations in captivity. Program managers must choose between maintaining the genetic purity of populations, at the risk of inbreeding depression, or interbreeding populations, at the risk of outbreeding depression. We evaluate these relative risks in a captive‐breeding program for 3 endangered populations of Atlantic salmon (Salmo salar). In each of 2 years, we released juvenile F1 and F2 interpopulation hybrids, backcrosses, as well as inbred and noninbred within‐population crosstypes into 9 wild streams. Juvenile size and survival was quantified in each year. Few crosstype effects were observed, but interestingly, the relative fitness consequences of inbreeding and outbreeding varied from year to year. Temporal variation in environmental quality might have driven some of these annual differences, by exacerbating the importance of maternal effects on juvenile fitness in a year of low environmental quality and by affecting the severity of inbreeding depression differently in different years. Nonetheless, inbreeding was more consistently associated with a negative effect on fitness, whereas the consequences of outbreeding were less predictable. Considering the challenges associated with a sound risk assessment in the wild and given that the effect of inbreeding on fitness is relatively predictable, we suggest that risk can be weighted more strongly in terms of the probable outcome of outbreeding. Factors such as genetic similarities between populations and the number of generations in isolation can sometimes be used to assess outbreeding risk, in lieu of experimentation. Evaluación del Riesgo de Depresión por Endogamia y Exogamia en un Programa de Reproducción en Cautiverio  相似文献   

18.
The hypervariable carbonic anhydrase 3/550 intron marker was sequenced in order to ascertain the levels of genetic variability and connectivity within and between reefal populations of the hard coral, Acropora austera, on the south-east African coastline. Populations were sampled from (north to south) Bazaruto and Inhaca islands (Mozambique), Rabbit Rock, Two-mile and Red Sands Reefs and Leadsman Shoal (Maputaland, South Africa). Populations at Inhaca Island contained two private alleles, part of the only monophyletic clade with fixed differences between populations in this study. Haplotype and nucleotide diversity were higher in the north of the study area. Indices of migration and haplotype sharing supported significant connectivity between populations in South Africa and Mozambique, which may be important in sustaining genetic diversity in the down-current South African A. austera populations. Measures of population subdivision indicated a significant amount of fixation of allele frequencies amongst populations. Although fine, such differentiation in a marker from the nuclear genome of a hard coral is consistent with some demographic isolation between A. austera populations in southern Mozambique and South Africa. Populations at Rabbit Rock and Inhaca Island were found to be significantly isolated from, and thus less connected to, A. austera populations at other reefs.  相似文献   

19.
Abstract:  Endangered species are commonly found in several (partially) isolated populations dispersed on different fragments of a habitat, natural reserve, or zoo. A certain level of connectivity among such populations is essential for maintaining genetic variation within and between populations to allow local and global adaptation and for preventing inbreeding depression. A rule of thumb widely accepted by the conservation community is that one migrant per generation (OMPG) into a population is the appropriate level of gene flow. This rule is based on Wright's study of his island model under a long list of simplifying assumptions. I examined the robustness of the OMPG rule to the violation of each of the many assumptions, quantifying the effect with population genetics theory. I showed that, when interpreted as one effective migrant per generation, OMPG is generally valid for real populations departing from the ideal model in the discrepancies of actual (  N ) and effective (  Ne  ) population sizes and actual ( m ) and effective ( me  ) migration rates. I also addressed the issue of converting the effective number of migrants (  Me= Neme  ) into the actual number of migrants ( M = Nm  ) of a certain age and sex. In particular, Ne < N , a case common for natural populations, did not necessarily require M > Me to maintain a certain level of differentiation among populations. Rather, translating the elusive Me into the manageable M depends on the specific causes (e.g., biased sex ratio, reproductive skew) that lead to Ne < N .  相似文献   

20.
Abstract: It has been argued that demographic and environmental factors will cause small, isolated populations to become extinct before genetic factors have a significant negative impact. Islands provide an ideal opportunity to test this hypothesis because they often support small, isolated populations that are highly vulnerable to extinction. To assess the potential negative impact of isolation and small population size, we compared levels of genetic variation and fitness in island and mainland populations of the black-footed rock-wallaby ( Petrogale lateralis [Marsupialia: Macropodidae]). Our results indicate that the Barrow Island population of P. lateralis has unprecedented low levels of genetic variation (  H e = 0.053, from 10 microsatellite loci) and suffers from inbreeding depression (reduced female fecundity, skewed sex ratio, increased levels of fluctuating asymmetry). Despite a long period of isolation ( ∼ 1600 generations) and small effective population size (  N e ∼ 15), demographic and environmental factors have not yet driven this population to extinction. Nevertheless, it has been affected significantly by genetic factors. It has lost most of its genetic variation and become highly inbred (  F e = 0.91), and it exhibits reduced fitness. Because several other island populations of P. lateralis also exhibit exceptionally low levels of genetic variation, this phenomenon may be widespread. Inbreeding in these populations is at a level associated with high rates of extinction in populations of domestic and laboratory species. Genetic factors cannot then be excluded as contributing to the extinction proneness of small, isolated populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号