首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Climate Variability in Regions of Amphibian Declines   总被引:5,自引:1,他引:4  
  相似文献   

5.
6.
Abstract:  The Earth's atmosphere has a natural greenhouse effect, without which the global mean surface temperature would be about 33 °C lower and life would not be possible. Human activities have increased atmospheric concentrations of carbon dioxide, methane, and other gases in trace amounts. This has enhanced the greenhouse effect, resulting in surface warming. Were it not for the partly offsetting effects of increased aerosol concentrations, the increase in global mean surface temperature over the past 100 years would be larger than observed. Continued surface warming through the 21st century is inevitable and will likely have widespread ecological impacts. The magnitude and rate of warming for the global average will be largely dictated by the strength and direction of climate feedbacks, thermal inertia of the oceans, the rate of greenhouse gas emissions, and aerosol concentrations. Because of regional expressions of climate feedbacks, changes in atmospheric circulation, and a suite of other factors, the magnitude and rate of warming and changes in other key climate elements, such as precipitation, will not be uniform across the planet. For example, due to loss of its floating sea-ice cover, the Arctic will warm the most .  相似文献   

7.
Abstract: The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science–policy interface. Similarly, boundary organizations—organizations or institutions that bridge different scales or mediate the relationship between science and policy—could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.  相似文献   

8.
9.
10.
11.
12.
Ecological Consequences of Recent Climate Change   总被引:47,自引:0,他引:47  
Abstract: Global climate change is frequently considered a major conservation threat. The Earth's climate has already warmed by 0.5° C over the past century, and recent studies show that it is possible to detect the effects of a changing climate on ecological systems. This suggests that global change may be a current and future conservation threat. Changes in recent decades are apparent at all levels of ecological organization: population and life-history changes, shifts in geographic range, changes in species composition of communities, and changes in the structure and functioning of ecosystems. These ecological effects can be linked to recent population declines and to both local and global extinctions of species. Although it is impossible to prove that climate change is the cause of these ecological effects, these findings have important implications for conservation biology. It is no longer safe to assume that all of a species' historic range remains suitable. In drawing attention to the importance of climate change as a current threat to species, these studies emphasize the need for current conservation efforts to consider climate change in both in situ conservation and reintroduction efforts. Additional threats will emerge as climate continues to change, especially as climate interacts with other stressors such as habitat fragmentation. These studies can contribute to preparations for future challenges by providing valuable input to models and direct examples of how species respond to climate change.  相似文献   

13.
14.
Connectivity Planning to Address Climate Change   总被引:1,自引:0,他引:1  
As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse‐filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present‐day spatial gradients of temperature. We modified a cost–distance algorithm to model these corridors and tested the model with data on current land‐use and climate patterns in the Pacific Northwest of the United States. The resulting maps identified a network of patches and corridors across which species may move as climates change. The corridors are likely to be robust to uncertainty in the magnitude and direction of future climate change because they are derived from gradients and land‐use patterns. The assumptions we applied in our model simplified the stability of temperature gradients and species responses to climate change and land use, but the model is flexible enough to be tailored to specific regions by incorporating other climate variables or movement costs. When used at appropriate resolutions, our approach may be of value to local, regional, and continental conservation initiatives seeking to promote species movements in a changing climate. Planificación de Conectividad para Atender el Cambio Climático  相似文献   

15.
16.
Abstract: Because ambient temperature strongly influences reproduction in frogs, the seasonal timing of frog calling provides a sensitive index of biotic response to climate change. Over the last century, daily temperatures increased during 5 of the 8 months key to gametogenesis in frogs and toads near Ithaca, New York ( U.S.A.). Earliest dates of calling frogs recorded by Albert Hazen Wright between 1900 and 1912 near Ithaca were compared to those from the New York State Amphibian and Reptile Atlas Project for 1990–1999 for the three counties surrounding Ithaca. Four species are now calling 10–13 days earlier, two are unchanged, and none is calling later. The data suggest that climate has warmed in central New York State during this century and has resulted in earlier breeding in some amphibians—a possible first indication of biotic response to climate change in eastern North America.  相似文献   

17.
18.
Climate Change, Elevational Range Shifts, and Bird Extinctions   总被引:4,自引:0,他引:4  
Abstract:  Limitations imposed on species ranges by the climatic, ecological, and physiological effects of elevation are important determinants of extinction risk. We modeled the effects of elevational limits on the extinction risk of landbirds, 87% of all bird species. Elevational limitation of range size explained 97% of the variation in the probability of being in a World Conservation Union category of extinction risk. Our model that combined elevational ranges, four Millennium Assessment habitat-loss scenarios, and an intermediate estimate of surface warming of 2.8° C, projected a best guess of 400–550 landbird extinctions, and that approximately 2150 additional species would be at risk of extinction by 2100. For Western Hemisphere landbirds, intermediate extinction estimates based on climate-induced changes in actual distributions ranged from 1.3% (1.1° C warming) to 30.0% (6.4° C warming) of these species. Worldwide, every degree of warming projected a nonlinear increase in bird extinctions of about 100–500 species. Only 21% of the species predicted to become extinct in our scenarios are currently considered threatened with extinction. Different habitat-loss and surface-warming scenarios predicted substantially different futures for landbird species. To improve the precision of climate-induced extinction estimates, there is an urgent need for high-resolution measurements of shifts in the elevational ranges of species. Given the accelerating influence of climate change on species distributions and conservation, using elevational limits in a tested, standardized, and robust manner can improve conservation assessments of terrestrial species and will help identify species that are most vulnerable to global climate change. Our climate-induced extinction estimates are broadly similar to those of bird species at risk from other factors, but these estimates largely involve different sets of species.  相似文献   

19.
Metapopulation Dynamics and Amphibian Conservation   总被引:23,自引:0,他引:23  
Abstract: In many respects, amphibian spatial dynamics resemble classical metapopulation models, in which subpopulations in breeding ponds blink in and out of existence and extinction and colonization rates are functions of pond spatial arrangement. This "ponds-as-patches" view of amphibian spatial dynamics is useful in several respects. First, it highlights the importance of regional and landscape processes in determining local patterns of abundance. Second, it offers a straightforward, pond-based approach to monitoring and managing amphibian populations. For many species, however, the ponds-as-patches view may be an oversimplification and metapopulation structure may be more apparent than real. Changes in distribution may be caused by processes other than extinction and recolonization, and most extinctions probably result from deterministic factors, not stochastic processes. In addition, the effects of pond isolation appear to be important primarily in disturbed environments, and in many cases these isolation effects may be better explained by the distribution of terrestrial habitats than by the distribution of breeding ponds. These complications have important implications for both researchers and managers. For researchers, future efforts need to determine the mechanisms underlying patterns of abundance and distributional change and patterns in amphibian populations. For managers, effective conservation strategies must successfully balance metapopulation considerations with careful attention to local habitat quality. Furthermore, translocations and active management may be indispensable tools for conserving amphibians in landscapes containing multiple breeding ponds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号