首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples of zooplankton were collected using a light trap at 5 sites in 3 locations on Heron Reef: (a) near the surface of open water 300 m south of the reef crest; (b) near the surface and at the substratum on the upper reef slope; (c) near the surface and at the substratum on a patch reef in the Heron lagoon. The collections made were analysed with respect to: (a) distribution and abundance of the taxa present; (b) faunistic relationships among samples from the 5 sites; (c) seasonal changes in both of these factors. A total of 181 taxa were recognised, many of which are identified to species, and many of which are demersal or epi-benthic in habits. At all sites, the abundance of animals increases from May to November, and faunal similarity between sites also changes. In May, reef collections are generally similar to one another and, with the exception of the slope surface collection, distinct from the open water collection. In September this pattern is enhanced, but in November slope collections more closely resemble the open water collection, while the lagoon collections are quite distinct from slope and open water collections. Lagoon surface and substratum collections also differ considerably from each other at this time. A MULTCLAS cluster analysis of the samples confirms the pattern of change in faunal relationships seen from examination of the collections. Dark-trap samples were used to assess the bias introduced by using a light to attract the animals, as well as to estimate the density of the fauna sampled. Lighttrap samples over-represent calanoid and harpacticoid copepods and gammarid amphipods, but the bias is minor and does not prevent use of a light trap as an efficient sampling tool for near-reef plankton. The density of the fauna is approximately 700 animals m-3 at all sites. This may be a lower density than in more tropical regions. Pronounced seasonal changes occur in faunal composition of collections from open water and from surface sites. The substratum collections show more constant faunas throughout the year. Major changes are primarily in the proportions of copepods and cumaceans present. Changes in amphipod numbers are also important at lagoon sites.  相似文献   

2.
D. Binet 《Marine Biology》1984,82(2):143-156
In the southwestern part of the lagoon of New Caledonia (South Pacific Ocean), a plankton sampling programme was conducted from February 1978 to April 1979. During 11 cruises, 5 stations in the open sea and various bays were sampled at approximately monthly intervals. A transect of 3 stations (mid lagoon, near-reef and barrier-reef channel) visited each fortnight, completed the sampling programme. The copepods collected were identified to the specific level, counted and the 52 most abundant species analysed for seasonal and regional variations. Cruise and transect data, dealt with separately, were analysed as follows: (a) Correspondence analyses (reciprocal averaging) of qualitative and quantitative copepod counts were made; these revealed the relationships between species and between samples by means of factorial design. After computation of factorial axes, the barycentres of different sets of samples were projected as reference points (zero weight) in the factorial space; these reference points, characterizing different stations and sampling times, facilitate ecological interpretation. (b) Species partition was achieved by two successive methods: non-hierarchical, followed by hierarchical classification. Between-species distance was computed from their co-ordinates on the factorial axis. (c) The clusters of species obtained were plotted in the factorial planes to assess ecological preference. Then, clusters from cruise and transect data sets were compared to improve the copepod classification. The main ecological factors appear to be (i) spatial patterns, (ii) seasonal temperature cycle, (iii) changes in wind force and direction. Different populations inhabit the open sea, near-reef, mid-lagoon, shallow and deep-bay waters. Acartia australis outnumbers all other species in the reef vicinity. A. amboinensis is the most abundant in the deep, fjord-like bay. Canthocalanus pauper, Paracalanus parvus, Bestiola sp., Centropages orsinii, A. bispinosa are characteristic of shallow bays. In the factorial structure produced by correspondence analysis, certain seasonal barycentres appear close to some station barycentres: summer close to mid-lagoon, winter close to open sea, and spring close to near-reef barycentres, respectively. This may be explained by the seasonal dynamics of the lagoon water. After the heavy summer rainfalls, freshwater runoff carries midlagoon plankton towards the open sea; conversely, during the winter westerly gales, oceanic species enter the lagoon through the barrier-reef channel or above the reef with the swell breakers. In October, the surface-layer current induced by the strong trade wind carries large swarms of A. australis out to the open sea. Finally, the variations of plankton populations and biomass in the lagoon seem to be governed by the direction of water flow across the reef channels. Enrichment factors are terrestrial sediment wash-out after rainfall and, probably, trade wind-induced upwelling. Therefore, the more or less steady state of the lagoon's plankton biomass may result from the fact that enrichment factors are also exportation factors. Reciprocally, the entry of plankton-poor oceanic water cannot increase the plankton biomass in the lagoon.  相似文献   

3.
Plankton samples were taken from January to June 1987 in Kaneohe Bay, Oahu, Hawaiian Islands, with a free-fall plankton net, to investigate the fine-scale distribution of larval fishes around coral reefs. Daytime samples indicated that the postflexion larvae of two gobiids (Psilogobius mainlandi and an unidentified species) were significantly more abundant at stations immediately adjacent to reefs (near-reef) than at stations in open water off the reef (off-reef). These postflexion gobiid larvae appeared to be capable of resisting advection and dispersal while remaining in the water column near suitable adult habitats. The larvae of Foa brachygramma (Apogonidae) and Encrasicholina purpurea (Engraulidae) were significantly more abundant at off-reef stations than at near-reef stations. Nighttime samples indicated that the gobiid larvae depend on visual cues to remain near the reef. The horizontal distributions of F. brachygramma and E. purpurea larvae appeared to be related to their vertical positioning. These data suggest that typical ichthyoplankton surveys which do not sample close to adult fish habitats would greatly underestimate the abundances of larvae such as the gobiids.  相似文献   

4.
A total of 34 zooplanktonic taxa were common in emergence trap, reentry trap, and net-tow samples taken in the lagoon of Heron Reef, Great Barrier Reef, between 27 February and 22 March and between 11 June and 4 July 1985. Twenty-nine of these taxa were classified as demersal (17 taxa), meroplanktonic and larval (10 taxa), or incidental (2 taxa). The remaining five multispecific groups yielded variable results. Differences were observed between two locations separated by 200 m, with emergence 2 to 62 times greater for 22 taxa at a deeper site with larger coral formations. Most zooplankters were more common (2 to 122 times) in samples from 1 m2 areas around 0.25 to 0.5 m2 patches of branching coral. However, two species of copepods, Pseudodiaptomus colefaxi and Metis holothuriae, were taken in greater numbers (3 to 12 times) from open sand. Seasonal increases (2 to 322 times) were observed for 13 adult taxa and 8 classes of larvae or juveniles in the summer and for 10 adult taxa and one larval group in the winter. Fourteen of the 17 demersal taxa and 4 groups of large larvae or juveniles emerged in numbers 2 to 323 times greater during lunar quarters or new moons. In contrast, 6 larval taxa and 4 groups of small or transparent adults displayed significant emergence during full moons. Five diurnal emergence patterns were shown by 27 taxa, with patterns varying primarily among lunar periods. The variety of taxon-specific patterns observed in this study highlight a need for caution when generalizing about demersal zooplankton.  相似文献   

5.
To investigate which physical processes contribute most in moulding zooplankton community structure in the waters close to coral reefs, light traps moored in a grid pattern were used to collect zooplankton from the sea surface at 16 stations on the downstream side of Helix Reef during three time periods (2100-2200, 2400-0100, and 0300-0400 hours) over three consecutive nights covering the new moon period in January 1992. Two distinct zooplankton communities were present: a community composed primarily of reef-resident, demersal plankton immediately to the south of the reef in an area of reduced flushing, and a community containing coastal and shelf-seas taxa at the more exposed sites in the open flow field. The fauna composition at a number of exposed stations was as rich as that at sheltered stations both in terms of number of taxa and diversity indices but was almost an order of magnitude less abundant. The reef-resident, demersal plankton community was dominated by gammarid amphipods, mysids, and polychaetes, whereas only transient, meroplanktonic forms such as echinoderm and echinopluteus larvae and shelf-seas, holoplanktonic forms such as doliolids and larvaceans were significantly more abundant in the exposed community. Zooplankton associations were apparently formed by a combination of hydrodynamic processes, spatial and temporal distribution patterns of individual taxa, specific behaviours of certain taxa, and the interactions among taxa at different trophic levels.  相似文献   

6.
The distribution of total dry weight of zooplankton, copepod numbers and ichthyoplankton across the outer continental shelf in the central Great Barrier Reef was examined at bi-weekly intervals for three months over summer of 1983. Copepods were sampled (236 m net) within 10 m of the surface and within 10 m of the bottom. Mean densities in surface waters decreased markedly from the mid-shelf to outer shelf and the Coral Sea, but no cross-shelf gradient occurred in the bottom-water. Densities of copepods on the mid-shelf (surface and bottom waters) and in bottom-waters of the outer shelf were typically ca. 400 m–3. Significantly lower densities (ca. 100 m–3) occurred in surface waters of the outer shelf, except during outbursts of Acartia australis, when densities in these waters differed little from those elsewhere on the shelf. In oceanic waters, 10 km from the outer shelf station, copepod densities in surface waters were ca. 40 m–3. Four of the five most abundant copepod taxa in surface waters, Paracalanus spp., Eucalanus crassus, Acrocalanus gracilis and Canthocalanus pauper, tended to be most abundant at the mid-shelf end of the transect. Acartia australis was sporadically very abundant in surface waters of the outer shelf, as was Paracalanus spp. in bottom-water of the outer shelf. An assemblage of Coral Sea species of copepod occurred in bottom-water of the outer shelf during two major intrusions, but not at other times. Densities of all common species varied considerably between cruises. Maximum densities of all common species except A. australis tended to be associated with diatom blooms linked to intrusions but a bloom did not necessarily mean all common species were abundant. Fish larvae included both reef and non-reef taxa, with reef taxa predominating on the outer shelf (approx 2:1 in density of individuals) and non-reef taxa dominating in nearshore samples (approx 2:1). Nine of the ten most abundant taxa analysed showed highly significant variation in numbers among stations and all but one of these also exhibited significant station x cruise interactions. Interactions generally reflected changes in the rank importance of adjacent stations from one cruise to the next or lack of any significant cross-shelf variation on some cruises where overall abundance of the taxa was low.  相似文献   

7.
Zooplankton abundance and grazing on autotrophic and heterotrophic particulate matter were measured along a transect across Davis Reef (18°5S; 147°39E) and in the back-reef lagoon over tidal and diel cycles during austral winter (August 1984). Zooplankton entering the reef from the surrounding shelf waters decreased in abundance over the reef flat, presumably because of predation. Within the reef lagoon, maximum daytime densities of pelagic copepods occurred during high water, suggesting an external input. At night, water-column zooplankton biomass increased by a factor of 2 to 3 due to the emergence of demersal reef zooplankton. Zooplankton grazing rates on heterotrophic particulate matter (bacteria + detritus and Protozoa) compared to phytoplankton were higher on the reef flat than on the fore-reef or lagoon. Within the lagoon, zooplankton grazing rates on heterotrophic material were maximum during high water, coincident with maximum tidal concentrations of particulate organic carbon. The combined demersal and pelagic zooplankton community were often able to crop 30% of the daily primary production by >2µm phytoplankton. However, >50% of phytoplankton biomass was in cells <2µm, presumably unavailable to these zooplankton. Our particulate production and ingestion measurements, together with zooplankton carbon demand extrapolated from respiration estimates, suggest that the zooplankton community of Davies Reef derives much of its nutrition from detritus.Joint contribution from the University of Maryland, Center for Environmental and Estuarine Studies (No. 2015), and the Microbial Ecology on a Coral Reef Workshop (MECOR No. 19)  相似文献   

8.
Distribution and abundance of Tisbe species were studied throughout a period of 3 years at 3 stations in the Lagoon of Venice (Italy). At 2 other stations samples were taken occasionally, as also at the Lido station (open sea). Twelve species may be considered as common inhabitants of the lagoon, and 3 species appear to be occasional transients, compared to the 9 species found at the Lido. A comparison of the physical data shows that the stations were similar in temperature and salinity, but differed primarily in pH values, sediment characteristics, algal substratum and faunal benthic community. The fact that remarkable differences in species composition and distribution of Tisbe could be observed between the various parts of the lagoon and the lagoon and the open sea, indicates that temperature and salinity are not so important for species diversity as are biotic factors. A particularly strong difference existed between samples taken at the bottom and from pilings, which constitute a very special biotope for the benthic communities in the lagoon and seem to be a preferred habitat for T. lagunaris and T. cucumariae. The data suggest that there is a certain interaction between T. holothuriae and the other species. Whenever T. holothuriae was abundant, the other species were rare, but T. clodiensis, T. dobzhanskii (Stations 1 and 2) and Tisbe sp. (Station 3) attained high relative abundance whenever T. holothuriae decreased considerably in number. T. holothuriae represents certainly the hardiest species of the lagoon, displaying a great ability to cope with stress conditions, even those present in the interior lagoon where strong fluctuations in salinity, temperature, pH and oxygen prevail.  相似文献   

9.
Few time series collections have been made of the larval ichthyofauna in waters directly above shallow coral reefs. As a result, relatively little is known regarding the composition and temporal dynamics of larval fish assemblages in shallow-reef waters, particularly those near a major western boundary current. We conducted a series of nightly net tows from a small boat over a shallow reef (Pickles Reef) along the upper Florida Keys during four new moon and three third-quarter moon periods in July (two new moons), August, and September 2000. Replicate tows were made after sunset at 0–1 m and at 4–5 m depth to measure the nightly progression in community composition, differences in depth of occurrence, and abundance and diversity with lunar phase. A total of 66 families was collected over the 3-month period, with a mean (±SE) nightly density of 23.7±2.1 larvae per 100 m 3 and diversity of 24.2±0.9 taxa per tow. A total of 28.8% of the catch was composed of small, schooling fishes in the families Atherinidae, Clupeidae, and Engraulidae. Of the remaining catch, the top ten most abundant families included reef fishes as well as mangrove and oceanic taxa (in descending order): Scaridae, Blennioidei (suborder), Gobiidae, Paralichthyidae, Lutjanidae, Haemulidae, Labridae, Gerreidae (mangrove), Balistidae, and Scombridae (oceanic). These near-reef larval fish assemblages differed substantially from those collected during previous offshore collections. Taxa such as the Haemulidae were collected at a range of sizes and may remain nearshore throughout their larval period. Overall, the abundance and diversity of taxa did not differ with depth (although within-night vertical migration was evident) or with lunar phase. Temporal patterns of abundance of larval fish families clustered into distinct groups that in several cases paralleled family life-history patterns. In late July, a sharp shift in larval assemblages signaled the replacement of oceanic water with inner shelf/bay water. In general, the suite and relative abundance of taxa collected each night differed from those collected on other nights, and assemblages reflected distinct nightly events as opposed to constant or cyclical patterns. Proximity to the Florida Current likely contributes to the dynamic nature of these near-reef larval assemblages. Our results emphasize the uniqueness of near-reef larval fish assemblages and point to the need for further examination of the biophysical relationships generating event-related temporal patterns in these assemblages.  相似文献   

10.
Nitrogen excretion rates of demersal macrozooplankton were measured together with nitrogen concentrations in the water column and sediments in lagoons of Heron Reef and One Tree Reef, Great Barrier Reef, Australia, during August and November 1991. Excretion rates increased with body weight, and weight-specific excretion rates of the demersal macrozooplankton were comparable to those of pelagic zooplankton and meiofauna in the Great Barrier Reef. Values of demersal macrozooplankton abundance from previous studies and excretion rates from this study were combined to estimate fluxes of ammonium from demersal macrozooplankton in coral reef lagoons. The estimated fluxes in the water column and sediments were 12 M NH4 m-2 d-1 and 34 M NH4 m-2d-1, respectively. These fluxes were compared with reported fluxes of ammonium in coral reef lagoons in the Great Barrier Reef, Australia. The estimated flux from the demersal macrozooplankton in the water column was 29 and 9% of those reported for microheterotroph regeneration and phytoplankton utilization, respectively. It was 10% of the reported advective flux during periods of low advection and 13% of the maximum efflux from sediments computed from diffusion models. The estimated flux from the demersal macrozooplankton in the sediments exceeded those reported for meiofauna, and was 5 to 32% and 2 to 13% of those reported for ammonification and utilization in sediments, respectively. The potential importance of demersal macrozooplankton in mediating sediment-water column exchanges in the absence of diffusive effluxes and when they swarm is discussed.  相似文献   

11.
Sponge populations on Australia's Great Barrier Reef (GBR) may contain a mix of both phototrophic and heterotrophic species. The distribution of many of these sponges on reefs is assumed to be determined by light. A model was developed to investigate how the distribution of phototrophic sponges over depth is restricted by the availability of photosynthetically active radiation. Estimates of the balance between photosynthetic production and the total respiratory demand of entire sponge communities on Davies Reef (a middle-shelf reef of the Great Barrier Reef) are provided. These estimates are based upon published data for community composition and biomass, whilst photokinetic parameters have been determined for a variety of sponge species from oxygenexchange measurements. Phototrophic sponges on the fore-reef slope are predicted to exist at or above a state of net 24 h compensation (i.e., photosynthetic oxygen production by sponges balances or exceeds respiration over a 24 h period) to a depth of 30 m. It is proposed that phototrophic sponges are obligate phototrophs because the availability of light for photosynthesis corresponds with the lower depth limit of their distribution. Sponge communities (including both phototrophs and heterotrophs) from the fore-reef and lagoon exist close to a state of net 24 h compensation to a depth of 10 to 15 m. This balance shows diurnal variations, associated with the activity of phototrophs, such that instantaneous compensation of the community may occur to depths of 20 to 25 m when light is maximal.  相似文献   

12.
The southern Great Barrier Reef (GBR), a region that rarely experiences cyclones, was impacted by tropical cyclone (TC) Hamish in March 2009. We documented on-reef physical and habitat conditions before, during and after the cyclone at One Tree Reef (OTR) using data from environmental sensor instrumentation and benthic surveys. Over 5 years of monitoring, ocean mooring data revealed that OTR experienced large swells (4–8 m) of short duration (10–20 min) not associated with a cyclone in the area. These swells may have contributed to the physical disturbance of benthic biota and decline in coral cover recorded prior to and after TC Hamish. During the cyclone, OTR sustained southeasterly gale force winds (>61.2 km h−1) for 18.5 h and swells >6 m in height for 4 h. Benthic surveys of exposed sites documented a 20% drop in live coral cover, 30% increase in filamentous algae cover and the presence of dislodged corals and rubble after the storm. Leeward sites were largely unaffected by the cyclone. Benthic cover did not change in the lagoon sites. Significant rubble movement and infill of the lagoon occurred. Two years after the cyclone, algal cover remained high and laminar corals had not recovered. Total coral cover at impacted sites had continued to decline. Environmental conditions and habitat surveys supported Puotinen’s (Int J Geogr Inf Sci 21:97–120, 2007) model for cyclone conditions that cause reef destruction. While TC Hamish had a major impact on the reef, change in benthic cover over several years was due to multiple stressors. This on-reef scale integration of physical and biological data provided a rare opportunity to assess impacts of a major storm and other disturbances, showing the importance of considering multiple stressors (short-lived and sustained) in assessing change to reef habitats.  相似文献   

13.
Plankton data collected by Ikeda et al. (1980) from the central region of the Great Barrier Reef, and spanning two years (1976 through 1978) of zooplankton records, have been analyzed extensively for spatial and temporal patterns. Estimates of net zooplankton (including chaetognaths, copepods, and larvaceans) and microzooplankton (juvenile copepods, encompassing nauplii and copepodites, and ciliates) were assessed at three stations across the 60 km lagoon. Temperature, salinity, and chlorophyll a were also measured. A cross-lagoonal gradient was identified in the plankton, concurring with results of related surveys of benthic taxa, such as scleractinian corals, soft corals, macro-algae, fish, sponges, crinoids, etc. Two associations of net zooplankton were identified. The first was associated primarily with the inner lagoon; the second with the outer lagoon. The inshore association was characterized by higher abundances of almost all net zooplankton taxa, particularly chaetognaths, copepods, polychaetes, decapods, and meroplanktonic larvae as well as higher concentrations of chlorophyll a. This inshore association wove back and forth across the lagoon through time, dominating the lagoon entirely during periods of high river discharge, reaching the mid-shelf platform reefs in this region, and sometimes being entirely absent during dry periods. Both seasonal and annual peaks in plankton abundance were generally linked with degree of runoff. Summer/autumn peaks of abundance were evident in chaetognaths, copepods, and larvaceans while annual variation was detected in the former two as well as in chlorophyll a concentrations. Depth stratification was noted in juvenile copepods and chlorophyll a concentrations at the center of the lagoon, with higher abundances recorded in deeper waters. The central Great Barrier Reef lagoon was found to be typical of other tropical coastal waters where plankton community dynamics are controlled primarily by physical factors. We suggest that any substantial changes in river discharge in this area will affect plankton production.A.I.M.S. Contribution No. 242  相似文献   

14.
Demersal zooplankton, those plankton which hide within reef sediments during the day but emerge to swim freely over the reef at night, were sampled quantitatively using emergence traps planced over the substrate at Lizard Island Lagoon, Great Barrier Reef. Densities of zooplankton emerging at night from 6 substrate types (fine, medium, and coarse sand, rubble, living coral and reef rock) and from 5 reef zones (seaward face, reef flat, lagoon, back reef, and sand flat) were determined. A large population of nocturnal plankton including cumaceans, mysids, ostracods, shrimp, isopods, amphipods, crustacean larvae, polychaetes, foraminiferans and copepods are resident members of the reef community at Lizard Island. The mean density of plankton emerging throughout the reef was 2510±388 (standard error) zooplankton/m2 of substrate. Biomass averaged 66.2±5.4 mg ash-free dry weight/m2 of substrate. Demersal zooplankton exhibited significant preferences for substrate types and reef zones. The highest mean density of zooplankton emerged from coral (11,264±1952 zooplankton/m2) while the lowest emerged from reef rock (840±106 zooplankton/m2). The density of demersal plankton was six times greater on the face than in any other zone, averaging 7900±1501 zooplankton/m2. Copepods dominated samples collected over living coral and rubble while foraminiferans, ostracods and decapod larvae were most abundant from sand. Plankton collected with nets at night correlated only qualitatively with plankton collected in emergence traps from the same location. Although abundant, demersal plankton were not numerous enough to meet the metabolic needs of all corals at Lizard Island Lagoon. Demersal plankton appear especially adapted to avoid fish predation. The predator-avoidance strategies of demersal plankton and maintenance of position on the reef are discussed. Our results indicate that much of the zooplankton over coral reefs actually lives on the reef itself and that previous studies using standard net sampling techniques have greatly underestimated plankton abundance over coral reefs.  相似文献   

15.
Sediments from the reef flat at Heron Island, Great Barrier Reef, were treated with known amounts of diesel and the uptake and clearance characteristics of the diesel n-alkanes by the gastropod Strombus luhuanus, in the field and aquaria, were measured. In each case, the uptake curve was unusual in that the concentration, expressed in terms of wet weight, reached a maxima within 24 h and then declined to relatively low levels. The maximum concentrations reached were below that in the sediments. Within the range investigated, the alkanes exhibited a substantial decline in the uptake rate-constant with increasing carbon number, tricosane exhibiting approximately 25% of the uptake rate-constant of dodecane. On the other hand, persistence, measured as the half-life, showed an increase with carbon number. Dodecane had a half life of 0.6 d and octadecane one of 2.2 d.  相似文献   

16.
The presence of mesopelagic organisms in the guts of surface-foraging seabirds feeding in open areas within seasonal pack ice in the Antarctic has given rise to questions regarding the effects of pack ice on the underlying mesopelagic community. Bottom-moored free-vehicle acoustic instruments were used in concert with midwater trawls and baited traps to examine the abundance, size distribution and vertical distribution of pelagic organisms in the uppermost 100 m of the water column during the austral spring of 1992 in two areas of the northwestern Weddell Sea, one covered by seasonal pack icc and the other free of ice cover. Acoustic largets were more abundant and significantly larger at the open-water station than beneath pack ice. However, targets at the ice-covered site exhibited a pronounced diel pattern, with the largest targets detected only at night. Samples from night trawls at the icecovered site contained several species of large, vertically-migrating mesopelagic fishes, whereas these species were absent from trawls taken during the day. In addition, baited traps deployed in pack ice just beneath the ice-water interface collected large numbers of scavenging lysianassoid amphipods, while deeper traps beneath the ice and traps at the open-water station were empty, indicating the presence of a scavenging community associated with the undersurface of the ice. These results sapport the idea that mesopelagic organisms migrate closer to the surface beneath pack ice than in open water, exposing them to possible predation by surface-foraging seabirds.  相似文献   

17.
D. Binet 《Marine Biology》1985,88(1):85-99
During a one-year survey of the south-western part of the New Caledonian lagoon (February 1978–April 1979), zooplankton was sampled at eight stations representing different biotopes. This paper attempts to explain the regional dynamics of the copepod community by means of specific diversity (H) and its components: number of species (S) and evenness (H:H max). For each station, cumulative samples were computed by progressively summing the successive samples. The diversities of these cumulative samples form a temporal-diversity spectrum. This spectrum is characteristic of the stability or variability of the population at each station. It appeared to be closely related to the date of the starting point of the cumulation. Therefore, a mean annual spectrum was calculated for each station, by averaging all the spectra obtained from different starting points. This mean annual-diversity spectrum offset seasonal variations, and seemed to be characteristic of the station's taxocoenose. It tended asymptotically towards the diversity of the yearly cumulated sample (composite sample made up of all samples collected during a year at the same station). In most cases, the spectrum tended towards this asymptote at lower values. However, at some stations, where a single species greatly outnumbered the others, the diversity of the yearly composite sample was lower than that of each individual sample. Thus, for these latter stations, the curve of the spectrum tended towards its asymptote at upper values. Rankfrequency curves were also used to reveal the distribution of individuals among species in the yearly cumulated samples, and proved to be very characteristic of the different stations. According to Legendre and Legendre, the number of species is a function of the stability of the environment and the evenness of the species' distribution is inversely proportional to the biological activity of the environment. A pattern of regional variations is proposed from the interpretation of the yearly averaged or cumulated indexes (H, S, H/H max) at the different stations. Open-sea and mid-lagoon populations have almost equivalent diversities, but these diversities are not attained in the same manner. The open-sea population benefits from a stable (highly predictable) environment and has a great number of species; high interspecific competition, due to the scarcity of food, leads to a moderate evenness. In the less stable environment of the mid-lagoon, the number of available niches is lower, resulting in less species, but the greater abundance of food induces less interspecific competition and, consequently, high occupation rates of the niches available, i.e., high evenness. At the boundaries of its biotope, the mid-lagoon population suffers two kinds of stress: terrestrial run-off near the cost and turbulence from breakers, and predation by plankton-feeders around the barrier reef. These stresses decrease both species richness and evenness. Elimination of most species results in the dominance of Acartia amboinensis in a deep, fjordlike river mouth, and of A. australis in the reef areas. The mixing of lagoon and open-sea plankton in the vicinity of the channel is reflected by an inflection point in the frequency-rank curves. The outcome of these exchanges is probably an exportation of plankton from the lagoon towards the open sea. This may be viewed as an exploitation of the lagoon ecosystem by the open-sea ecosystem, inhibiting a full maturation of the former.  相似文献   

18.
At the compacted, north-south line of the ice edge, phytoplankton were sampled during early austral autumn of 1986 in the northwestern Weddell Sea. Cells from discrete water bottle samples from 12 stations on two east-west transects were counted to gain quantitative information on the composition, abundance, distribution, and condition of the phytoplankton in water-column assemblages. Over 70 species were found. The highest numbers of total cells (integrated through the top 150 m) were found in open water, well-separated from and to the east of the ice edge on the southern transect, with 6.01×1010 cells m-2. The relative abundance of diatoms was low at ice-convered stations (< 35% of the total phytoplankton in preserved samples) and high at open-water stations (> 80%); however, the relative abundance of the prymnesiophyte Phaeocystis sp. was high at ice-covered stations (> 60%) and low at open-water stations (< 16%), with lower absolute abundances than during a previous austral-spring phytoplankton increase. In the open ocean, the dominants were the pennate diatoms Fragilariopsis cylindrus, Pseudonitzschia prolongatoides, F. curta, and a small form of the centric diatom Chaetoceros dichaeta in chains. Although the three pennate diatoms were frequently dominant in number, they represented less biomass than C. dichaeta in open waters. Mean phytoplankton abundance was low (0.2×106 cells l-1) but, overall, the diatom cell density (0.14×106 cells l-1) was similar to that found previously during a northward transect from ice-covered to ice-free water at the Weddell-Scotia Sea ice edge (spring 1983). The phytoplankton spatial patterns in the two autumn transects differed, with the more southerly transect exhibiting a higher abundance of diatoms and dinoflagellates. The ratio of full to empty diatoms was higher on the southern transect, indicating a healthy population, while lower ratios of full/empty frustules on the northern transect suggested a generally declining population. However, Phaeocystis sp. was more abundant on the northern transect.  相似文献   

19.
Seasonal and diel variations in community structure and abundance of coral-reef lagoon mysids were examined at Davies Reef in the central region of the Great Barrier Reef (GBR) between June 1980 and May 1981. Twenty-five mysid species belonging to three subfamilies of the family Mysidae were captured during the study, with six new records for the GBR. The epibenthic mysid community differed from that in the overlying water, was faunistically uniform, but formed characteristic seasonal and diel groupings. The dominant epibenthic species were Erythrops sp., Anisomysis pelewensis, Doxomysis littoralis, A. laticauda, Prionomysis stenolepis, A. lamellicauda, and A. australis, five of which formed schools. Total mysid abundances ranged between 110 and 790 m-3 with peak abundance in October. Schooling species occurred at local densities of up to 500 000 m-3. Mysids were absent from shallow and midwater depths during the day, but were distributed throughout all depths at night with peak abundances in mid-water and deep layers. The dominant species in the water column at night were Pseudanchialina inermis, A. laticauda and Gastrosaccus indicus, in descending order of abundance. Lagoonal mysids contribute little to the food of sessile reef planktivores, as all but three species remain concentrated near or on the lagoon floor both day and night. The contribution of resident lagoon mysids to reef trophodynamics is probably through remineralization of lagoon detritus. Given the vast reef areas comprised of sandy lagoons, the large populations and relatively large size of lagoon mysids, this trophodynamic role may be of considerable importance.A.I.M.S. Contribution No. 477  相似文献   

20.
The length of larval life in some coral reef fishes was estimated from the number of growth increments in the otoliths of newly settled fishes. We examined 210 individuals comprising 38 species and 5 unidentified taxa, and belonging to 12 families. During 2 successive austral summers (1976–1977 and 1978–1979), specimens were collected from the lagoon at One Tree Reef, Great Barrier Reef, Australia. By assuming that growth increments in otoliths are laid down on a regular daily cycle commencing near the time of hatching, we calculated typical ages ranging from 3 to 6 wk with a minimum of just over 2 wk and a maximum of 12 wk. The otoliths also contain distinctive microstructural features which can serve as approximate temporal markers for the change from the postlarval to juvenile life stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号