首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burning of crop residues is a common agricultural practice that incorporates the resulting particulate matter (ash) of high adsorptivity into soils. To investigate the effect of ash on the biodegradation of pesticides in soils, we measured the sorption, desorption, and biodegradation of benzonitrile in a silt loam in the presence and absence of an ash resulting from burning of wheat (Triticum aestivum L.) residue. Biodegradation experiments were conducted by inoculating sorbent slurries with a pure culture of benzonitrile-degrading bacteria (Nocardia sp.). Both liquid- and sorbed-phase benzonitrile concentrations were quantified over time. The ash was approximately 2000 times more effective per unit mass than the soil in sorbing benzonitrile. Amendment of the soil with 1% ash (by weight) resulted in a 10-fold increase in sorption. Sorption of benzonitrile by the ash significantly decreased the solution-phase concentration in the slurries of ash and ash-amended soil. Desorption of benzonitrile from the ash required approximately 60 min to complete, whereas approximately 20 min were required for desorption from the soil. Benzonitrile in the extracts of various sorbents and soil slurry was completely degraded within 500 min. However, the degradation was substantially reduced in the presence of the ash. At 2000 min, only 20% of benzonitrile in ash slurry and only 44% in ash-amended soil slurry were degraded. An acclimation period of approximately 100 min was observed in extracts and slurries containing the ash. Substantial reduction in the biodegradation of benzonitrile in the presence of wheat ash was apparently due to sorption of benzonitrile by the ash, slow desorption from the ash, and the increased acclimation period. Our results suggest that the presence of crop-residue-derived ash may increase the persistence of pesticides in agricultural soils.  相似文献   

2.
This study investigated the effect of inoculation of white rot fungus, Pleurotus ostreatus, incubation time, and levels of contamination on anthracene degradation in contaminated soil over a 90-day period. Control samples were set up to compare rates of degradation at different levels of anthracene contamination in soil. Using HPLC, extracts from soil were analyzed on intervals of 30 days to determine the level of anthracene remaining in soil. After 90 days of incubation, it was observed that time, level of contamination, and fungal treatment affected the rate of degradation of all levels of anthracene contamination, inoculated soil showed more degradation of anthracene (76–89%) compared to control soil (33–51%). It was also observed that concentration of the anthracene increased at different sampling dates in some of the soil samples. In this study, such increase in anthracene concentration was attributed to errors of extraction, sorption of the anthracene to soil particles, and possible repolymerization of anthracene in soil organic matter. The release of ligninolytic enzymes such as lignin peroxidase, laccase, and manganese peroxidase by Pleurotus ostreatus was associated with the anthracene degradation observed. A general observation indicates that an interaction between time, level of contamination, and soil treatment is vital in the degradation of high levels of anthracene contamination by the white rot fungus.  相似文献   

3.
This study investigated the use of electrokinetics in unsaturated soil to promote biodegradation of pentachlorophenol through increased contact between bacteria and contaminant. Soil microcosms, contaminated with approximately 100 mg kg−1 pentachlorophenol (containing [14C]-PCP as a tracer), and inoculated with a specific pentachlorophenol-degrading bacterium (Sphingobium sp. UG30–1 × 108 cfu g−1) were subjected to constant and regularly reversed electric currents (10 mA). The former caused large pH and moisture content changes due to water electrolysis and electroosmotic effects, with subsequent negative impacts on biodegradation parameters including enzyme activity and contaminant mineralisation (as measured by 14CO2 evolution rate). The reversed field caused little change in pH and moisture content and led to more rapid contaminant mineralisation, lower soil contaminant concentration in the majority of the microcosms and increased soil enzyme activity (with the exception of soil immediately adjacent to the anode). The presence of an electric field, if suitably applied, may therefore enhance contaminant biodegradation in unsaturated soil.  相似文献   

4.
To investigate the distribution of parathion [O,O-diethyl O-(4-nitrophenyl) phosphorothioate] and its highly toxic metabolite paraoxon [O,O-diethyl O-(4-nitrophenyl)phosphate] between the soluble and sorbed pools in the soil, batch experiments were conducted to evaluate the rate of adsorption and desorption of 14C-labeled parathion and paraoxon in soil. The mineralization and degradation of these products were also investigated during a 56-d experiment under controlled laboratory conditions. Adsorption patterns indicated initial fast adsorption reactions occurring within 4 h for both parathion and paraoxon. We also observed the formation of nonextractable residues. The paraoxon was more intensively degraded than the parathion, and production of p-nitrophenol and other metabolites was observed. A kinetic model was developed to describe the sorption and biodegradation rates of parathion, taking into account the production, retention, and biodegradation of paraoxon, the main metabolite of parathion. After fitting the parameters of the model we made a simulation of the kinetics of the appearance and disappearance of paraoxon. From the simulation we predicted a quantity of metabolite in the liquid phase amounting to 1% of the quantity of parathion initially applied. This is in agreement with the experimental data.  相似文献   

5.
Perchlorate (ClO4-) contamination of ground water and surface water is a widespread problem, particularly in the western United States. This study examined the effect of biodegradation on perchlorate fate and transport in soils. Solute transport experiments were conducted on two surface soils. Pulses of solution containing perchlorate and Br- were applied to saturated soil columns at steady state water flow. Perchlorate behaved like a nonreactive tracer in Columbia loam (coarse-loamy, mixed, superactive, nonacid, thermic Oxyaquic Xerofluvent) but was degraded in Yolo loam (fine-silty, mixed, superactive, nonacid, thermic Mollic Xerofluvent). Batch experiments demonstrated that perchlorate removal from solution in Yolo loam was caused by biodegradation. Other batch experiments with Yolo loam surface and subsurface soils, Columbia loam surface soil, and dredge tailings demonstrated that perchlorate biodegradation required anaerobic conditions, an adequate carbon source, and an active perchlorate-degrading microbial population. The sequential reduction of perchlorate and NO3- by an indigenous soil microbial community in Yolo loam batch systems was also studied. Nitrate reduction occurred much sooner than perchlorate reduction in soils that had not been previously exposed to perchlorate, but NO3- and perchlorate were simultaneously reduced in soils previously exposed to perchlorate. The results of this study have implications for in situ remediation schemes and for agricultural soils that have been contaminated by perchlorate-tainted irrigation water.  相似文献   

6.
The leaching of surface-applied herbicides, such as dicamba (2methoxy-3,6-dichlorobenzoic acid), to ground water is an environmental concern. Seasonal changes in soil temperature and water content, affecting infiltration and biodegradation, may control leaching. The objectives of this study were to (i) investigate the leaching of dicamba applied to turfgrass, (ii) measure the degradation rate of dicamba in soil and thatch in the laboratory under simulated field conditions, and (iii) test the ability of the model EXPRES (containing LEACHM) to simulate the field transport and degradation processes. Four field lysimeters, packed with sandy loam soil and topped with Kentucky bluegrass (Poa pratensis L.) sod, were monitored after receiving three applications (May, September, November) of dicamba. Concentrations of dicamba greater than 1 mg L(-1) were detected in soil water. Although drying of the soil during the summer prevented deep transport, greater leaching occurred in late autumn due to increased infiltration. From the batch experiment, the degradation rate for dicamba in thatch was 5.9 to 8.4 times greater than for soil, with a calculated half-life as low as 5.5 d. Computer modeling indicated that the soil and climatic conditions would influence the effectiveness of greater degradation in thatch for reducing dicamba leaching. In general, EXPRES predictions were similar to observed concentration profiles, though peak dicamba concentrations at the 10-cm depth tended to be higher than predicted in May and November. Differences between predictions and observations are probably a result of minor inaccuracies in the water-flow simulation and the model's inability to modify degradation rates with changing climatic conditions.  相似文献   

7.
Calorimetry was used to monitor the inhibitory effect caused by the bipyridynium diquaternary salts paraquat, diquat, and phosphamidon on microbial activity in a Red Latosol soil (Oxisol). The thermal effect was recorded on samples composed of 1.50 g of soil, 6.0 mg of glucose, 6.0 mg of ammonium sulfate, and different masses of an inhibitor ranging from zero to 8.00 mg, under a controlled moisture content of 35%. Thermal effects of each pollutant on the degradation curves of glucose in the soil were compared. Increasing amounts of the inhibitor caused a decrease in the thermal effect from -2234 to -1987 kJ mol(-1) for paraquat, -1670 to -1306 kJ mol(-1) for diquat, and -2239 to -589 kJ mol(-1) for phosphamidon. The last xenobiotic agent caused a significant inhibitory effect on the microbial activity of the soil. The results of relative efficiency, eta = deltaH/deltaH', referring to the enthalpic value with (deltaH) and without (deltaH') agrochemical in the soil, exhibited a significant correlation. From this correlation obtained for the ranges 2.00 to 8.00, 1.30 to 8.00, and 1.20 to 5.80 mg of the agrochemicals paraquat, diquat, and phosphamidon, respectively, the following eta values were calculated: 0.993 to 0.894, 0.668 to 0.522, and 0.896 to 0.236, respectively, during the degradation of glucose in the soil. The largest relative efficiency for paraquat implies that this agrochemical can be metabolized by microbial activity.  相似文献   

8.
Water-soluble anionic polyacrylamide (WSPAM), which is used to reduce erosion in furrow irrigated fields and other agriculture applications, contains less than 0.05% acrylamide monomer (AMD). Acrylamide monomer, a potent neurotoxicant and suspected carcinogen, is readily dissolved and transported in flowing water. The study quantified AMD leaching losses from a WSPAM-treated corn (Zea mays L.) field using continuous extraction-walled percolation samplers buried at 1.2 m depth. The samplers were placed 30 and 150 m from the inflow source along a 180-m-long corn field. The field was furrow irrigated using WSPAM at the rate of 10 mg L(-1) during furrow advance. Percolation water and furrow inflows were monitored for AMD during and after three furrow irrigations. The samples were analyzed for AMD using a gas chromatograph equipped with an electron-capture detector. Furrow inflows contained an average AMD concentration of 5.5 microg L(-1). The AMD in percolation water samples never exceeded the minimum detection limit and the de facto potable water standard of 0.5 microg L(-1). The risk that ground water beneath these WSPAM-treated furrow irrigated soils will be contaminated with AMD appears minimal.  相似文献   

9.
Irradiation with ultrasound (US) and use of an enzyme (E) as pretreatment techniques were carried out to treat a complex effluent (distillery wastewater). These two techniques have been used alone as well as in combination and the efficacy of these techniques was tested by subjecting the effluent to subsequent aerobic biological oxidation (AO). When used alone, US exposure for 30 min and 2 h yielded the best COD reduction during the aerobic oxidation step (US+AO). For the enzyme when used alone, a pH value of 4.8 (corresponding to the optimum pH of the enzyme), a dose of 50 U and a pretreatment time of 24 h yielded better COD removal efficiency as compared to untreated effluent (aerobic oxidation alone). When used in combination, ultrasound followed by enzymatic pretreatment (US+E+AO) yielded the best COD removal efficiencies during aerobic oxidation as compared to the other combinations tested for the treatment of the distillery wastewater. A 4-fold increase in the initial oxidation rate was observed over the untreated batch for the integrated technique (US+E+AO). On the basis of the variation in the values of the biokinetic parameters it can be concluded that the type of pretreatment scheme affects the subsequent rate of the aerobic oxidation significantly.  相似文献   

10.
铀在土壤中的吸附动力学   总被引:1,自引:0,他引:1  
胡立  梁斌  周敏娟 《四川环境》2011,30(1):21-25
以四川盆地红层丘陵区涪江河谷两岸广泛分布的第四系中更新统亚粘土为对象,用动态法测定了铀在该土壤中的平衡吸附量,为极低放废物的处置提供一些理论依据。研究了流速、土壤粒度及铀溶液初始浓度对土壤吸附铀的影响,并用常用的吸附动力学方程对实验数据进行了拟合。结果表明:土壤粒度小的平衡吸附量较大;流速越小、平衡吸附量越大;铀溶液的初始浓度越大,平衡吸附量越大;在用动力学方程拟合时,E lovich方程的拟合度最好;该土壤对铀的最大吸附率为61.1%,吸附性能较差。  相似文献   

11.
Nutrient amendment to oil-contaminated beach sediments is a critical factor for the enhancement of indigenous microbial activity and biodegradation of petroleum hydrocarbons in the intertidal marine environment. In this study, we investigated the stimulatory effect of the slow-release fertilizers Osmocote (Os; Scotts, Marysville, OH) and Inipol EAP-22 (Ip; ATOFINA Chemicals, Philadelphia, PA) combined with inorganic nutrients on the bioremediation of oil-spiked beach sediments using an open irrigation system with artificial seawater over a 45-d period. Osmocote is comprised of a semipermeable membrane surrounding water-soluble inorganic N, P, and K. Inipol, which contains organic N and P, has been used for oil cleanup on beach substrate. Nutrient concentrations and microbial activity in sediments were monitored by analyzing sediment leachates and metabolic dehydrogenase activity of the microbial biomass, respectively. Loss of aliphatics (n-C12 to n-C33, pristane, and phytane) was significantly greater (total loss between 95 and 97%) in oil-spiked sediments treated with Os alone or in combination with other nutrient amendments, compared with an unamended oil-spiked control (26% loss) or sediments treated with the other nutrient amendments (28-65% loss). A combination of Os and soluble nutrients (SN) was favorable for the rapid metabolic stimulation of the indigenous microbial biomass, the sustained release of nutrients, and the enhanced biodegradation of petroleum hydrocarbons in leached, oil-contaminated sediments.  相似文献   

12.
High suspended sediment (SPS) concentration commonly exists in many Asian rivers. Furthermore, climate change can cause high floods and lead to the resuspension of sediments and soil erosion, resulting in high SPS concentration in many natural waters. This research studied the impact of the presence of SPS and organic C composition of SPS on the biodegradation and mineralization of phenanthrene (PHE). Three sediments, including original sediment (OS), 375 degrees C (S375), and 600 degrees C (S600) combusted sediment, were studied. A flask-based 14C-respirometer system was applied to study the mineralization of [14C]PHE by Agrobacterium sp. The mineralization rate of PHE in the absence of SPS was significantly lower than that with the presence of OS and S600 but higher than that with S375, suggesting that the effect of the presence of sediment on PHE mineralization depended on its organic C composition. The residual levels of PHE in the S375 and OS systems were about 1.5 times that of the S600 system after incubation for 2 d. After 26-d incubation, the mineralization rates of PHE were 34.64, 29.40, and 14.00% in the OS, S600, and S375 systems, respectively. The first-order rate constants of the OS and S600 systems were about three times that of the S375 system. The net influence of SPS on the biodegradation and mineralization rates of PHE was dependent on its effects on compound bioavailability and bacteria population. This study suggested that black C played a key role in reducing the mineralization rates of PHE in sediments-even without aging.  相似文献   

13.
During the dry season in Korea, rivers become more vulnerable to contamination by biochemical oxygen demand (BOD) and nitrogen. It is hypothesized that the natural characteristics of the streams in Korea allow the contaminated water to be treated at the tributaries. Down-stream river water quality in Korea may be improved by spraying the contaminated stream water from the tributaries over the surrounding floodplains. The consequent water filtration through the soil could remove the contaminants through aerobic and denitrifying reactions. In this study, the kinetics parameters of the denitrifying reaction in floodplain filtration were determined using contaminated stream water. For the electron donor the Monod kinetics was used, while the competitive Michaelis-Menten model was employed for the electron acceptors. The parameters to the competitive Michaelis-Menten model were found using continuous denitrifying reactions, instead of the batch reactions employed in previous studies, to match the conditions needed to apply the competitive Michaelis-Menten kinetics. From the result, it was found that continuous reactions as well as batch reactions could be used to determine the affinity coefficients in denitrification. The results of this study also showed that the affinity coefficient of NO2, using continuous reactions, was similar to that of other studies in the literature found via batch reactions, whereas the affinity coefficient of N2O was much larger than that acquired with batch reactions. The parameters obtained in this study will be used in future work to simulate the contaminant behaviors during floodplain filtration using a mathematical model.  相似文献   

14.
Nine New Zealand native white-rot fungi were studied for their ability to grow and survive on different substrates formulated from bark, wheat straw, sawdust, apple pomace and maize products in order to identify their pentachlorophenol (PCP) biodegradation potential and to select a fungal carrier for bioaugmentation of polluted soils. Isolates were also evaluated to mineralize (14)C-PCP in liquid culture and in soil. The American fungus Phanerochaete chrysosporium outgrew the native fungi on the substrates tested, but the high colonisation did not result in superior PCP dechlorination as measured by chloride release. Whilst Trametes versicolor inocula produced on wheat straw and SCS (sawdust-corn meal-starch-mix) gave the highest chloride release, colonization of these two substrates as measured by biological potential was lower compared to the pomace and pomace-sawdust-mix. Neither lignin peroxidase nor manganese peroxidase production were measured for New Zealand white-rot fungi during the experiments. Laccase was the only enzyme detected. In liquid culture, the mineralisation rate was higher for T. versicolor isolates compared to P. chyrysoporium. Very little to no pentachloroanisole (PCA) was captured in the volatile fraction of T. versicolor isolates, whereas 75% of the volatile fraction of P. chrysosporium consisted of PCA. The soil microcosms studies, using contaminated soil from a timber treatment site, clearly showed that the New Zealand T. versicolor isolates mineralized PCP. Degradation of PCP in non-sterile soil was higher in the presence of white-rot fungi than in soil without white-rot fungus. This demonstrates that viable white-rot fungus is necessary for significant PCP degradation and that T. versicolor isolates showed PCP remediation potential. Wheat straw and SCS could be suitable carriers for New Zealand native T. versicolor isolates for bioremediation of PCP polluted soil sites.  相似文献   

15.
The kinetics of CO2 absorption in unloaded aqueous ammonia solution were measured using a string of discs contactor with the aqueous ammonia concentrations ranging 0.9–5.4 kmol/m3 and temperatures ranging 298.3–321.9 K. The reaction rates strongly increase with the concentration and less strongly with temperature. Both the termolecular and zwitterion models were applied in this study as amine solutions. The parameters for both of the models were interpreted. The kinetic rate constants for CO2 absorption in aqueous ammonia were compared with those for other amines and were found to be around 1/10 that for monoethanolamine. The fitting results for the termolecular mechanism seem more robust than those for the zwitterion mechanism from a statistical perspective.  相似文献   

16.
城市污水臭氧消毒宏观动力学探索   总被引:1,自引:0,他引:1  
消毒是城市污水回用的必要环节。本文以某污水厂出水为研究对象,采用臭氧(O3)作为消毒剂,考查了臭氧在实验水中的溶解和衰减过程,不同通气量和不同pH值条件下臭氧对城市污水厂生化处理后出水中大肠菌群的消毒过程和消毒效果。实验结果显示,臭氧对水中大肠菌群的消毒速度快、消毒效果十分显著;通入水中的气量低于10l/h时,灭菌率随通气量的提高而提高;在水质偏酸性时,有利于臭氧的溶解和提高大肠菌群的去除率;通气量在5l/h—30l/h,处理时间在10min以内时实验条件下臭氧消毒宏观动力学方程为—logS=Kt,式中K=0.2385min^-1—0.4674min^-1。  相似文献   

17.
Volatilization of dimethyldiselenide (DMDSe) is one of the most important processes for removing selenium (Se) from Se-contaminated environments. However, the fate of DMDSe in soil is not known. In this study, we monitored the changes of DMDSe in the head space of soil samples spiked with known amounts of DMDSe gas, and fractionated and speciated the resulting Se forms in soil. Dimethyldiselenide was highly dissolved in water in a closed air-water system and was highly sorbed onto soil in a closed air-soil system. Chemical and biological transformations of DMDSe in soil converted a large amount of DMDSe to nonvolatile Se compounds. Elemental Se [Se(0)] and nonvolatile organic Se were the major forms of Se transformed from spiked DMDSe. Microbial conversion of DMDSe to dimethylselenide (DMSe) in soil increased the production of DMSe. Calculation of the mass recovery showed that about 85 to 93% of the added DMDSe was recovered as Se(0), organic Se, organic material Se (OM-Se), Se(IV), and volatile organic Se in the head space in the non-autoclaved soils and 50 to 70% of the added DMDSe was recovered in the autoclaved soils. These results indicate that DMDSe is not a stable form of Se, and it may be one of the important precursors of DMSe in the soil environment.  相似文献   

18.
Phosphorus leaching in relation to soil type and soil phosphorus content   总被引:6,自引:0,他引:6  
Phosphorus losses from arable soils contribute to eutrophication of freshwater systems. In addition to losses through surface runoff, leaching has lately gained increased attention as an important P transport pathway. Increased P levels in arable soils have highlighted the necessity of establishing a relationship between actual P leaching and soil P levels. In this study, we measured leaching of total phosphorus (TP) and dissolved reactive phosphorus (DRP) during three years in undisturbed soil columns of five soils. The soils were collected at sites, established between 1957 and 1966, included in a long-term Swedish fertility experiment with four P fertilization levels at each site. Total P losses varied between 0.03 and 1.09 kg ha(-1) yr(-1), but no general correlation could be found between P concentrations and soil test P (Olsen P and phosphorus content in ammonium lactate extract [P-AL]) or P sorption indices (single-point phosphorus sorption index [PSI] and P sorption saturation) of the topsoil. Instead, water transport mechanism through the soil and subsoil properties seemed to be more important for P leaching than soil test P value in the topsoil. In one soil, where preferential flow was the dominant water transport pathway, water and P bypassed the high sorption capacity of the subsoil, resulting in high losses. On the other hand, P leaching from some soils was low in spite of high P applications due to high P sorption capacity in the subsoil. Therefore, site-specific factors may serve as indicators for P leaching losses, but a single, general indicator for all soil types was not found in this study.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs) have earned considerable attention due to their widespread environmental distribution and toxicity. In the environment, PAHs decompose by a variety of biotic and abiotic pathways. In both polar and nonpolar environments, phenanthrene (Phe, a common, three-ring PAH) is converted by sunlight to more polar products such as 9,10-phenanthrenequinone (PheQ) and subsequent oxidation products such as the corresponding open-ring dicarboxylic acid product. Biodegradation of phenanthrene also usually leads to oxidative metabolites, and eventually ends in mineralization. Our experimental objective was to investigate the photodegradation of phenanthrene and determine the effect of reaction products such as PheQ on microbial biodegradation of two- and three-ring PAHs. Abiotic experiments were performed to examine the photolytic breakdown of Phe; Phe was converted to PheQ, which catalyzed its own formation. In biodegradation experiments PheQ (0.04-4 mg/L) caused marked inhibition of naphthalene (Nap) biodegradation by a Burkholderia species; Phe did not. Only 20% of the naphthalene was degraded in the presence of PheQ compared with 75% in the control culture with no PheQ added. No PAH-degrading cultures were able to use PheQ as sole carbon source; however, the Phe-degrading enrichment culture dominated by a Sphingomonas species was able to degrade PheQ cometabolically in the presence of Phe. These results may explain why photooxidized phenanthrene-containing mixtures can resist biodegradation.  相似文献   

20.
催化动力学光度法测定环境中痕量钒的研究   总被引:1,自引:0,他引:1  
基于V(v)在KHP-KCl缓冲溶液中,邻苯二酚活化剂存在下,对溴酸钾氧化邻苯二胺的催化作用、建立了一个测定环境样品中痕量钒的催化动力学光度法。检出限为0.02ng/mlV,线性范围是0.4-14ng/mlV,该法用于煤,降尘,人发和尿中钒的测定,结果满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号