首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Smog chamber/FTIR techniques were used to study the relative reactivity of OH radicals with methanol, ethanol, phenol, C2H4, C2H2, and p-xylene in 750 Torr of air diluent at 296±2 K. Experiments were performed with, and without, 500–8000 μg m−3 (4000–50 000 μm2 cm−3 surface area per volume) of NaCl, (NH4)2SO4 or NH4NO3 aerosol. In contrast to the recent findings of Oh and Andino (Atmospheric Environment 34 (2000) 2901, 36 (2002) 149; International Journal of Chemical Kinetics 33 (2001) 422) there was no discernable effect of aerosol on the rate of loss of the organic compounds via reaction with OH radicals. Gas kinetic theory arguments cast doubt upon the findings of Oh and Andino. The available data suggest that the answer to the title question is “No”. As part of this work the rate constants for reactions of OH radicals with methanol, ethanol, and phenol in 750 Torr of air at 296 K were determined to be: kOH+CH3OH=(8.12±0.54)×10−13, kOH+C2H5OH=(3.47±0.32)×10−12 and kOH+phenol=(3.27±0.31)×10−11 cm3 molecule−1 s−1.  相似文献   

2.
The Canadian Acid Aerosol Measurement Program (CAAMP) was established in 1992 to gain a better understanding of the atmospheric behaviour of fine particle strong acidity (“acid aerosols”) and to facilitate an assessment of the potential health risks associated with acid aerosols and particles in general. During 1992. 1993 and 1994, annular denuder and filter measurements were taken at four sites in Ontario, two in Quebec, three in the Atlantic Provinces and one in the greater Vancouver area. Mean fine particle sulphate concentrations (SO42−) were highest in southern Ontario (annual average ranged from 40–70 nmol m−3), lowest at a site in the Vancouver area (average = 16 nmol m−3) and second lowest in rural Nova Scotia. However, mean fine particle strong acid concentrations (H+) were geographically different. The highest mean concentrations were at the east coast sites (annual average of up to 30 nmol m−3). Acidities were lower in areas where the fine particle acidity experienced greater neutralization from reaction with ammonia. This included the major urban centres (i.e. Toronto and Montréal) and areas with greater amounts of agricultural activity, as in rural southern Ontario. On average, ambient concentrations of fine and coarse particle mass were larger in the urban areas and also in areas where SO42− levels were higher. All the particle components were episodic. However, compared to SO42− and fine particles (PM2.5 or PM2.1, depending upon inlet design), episodes of H+ tended to be less frequent and of shorter duration, particularly in Ontario. Saint John, New Brunswick, had the highest mean annual H+ concentration, which was 30 nmol m−3. H+ episodes (24 h concentration > 100 nmol m−3) were also the most frequent at this location. The high levels in Saint John were partially due to local sulphur dioxide sources and heterogeneous chemistry occurring in fog, which, on average, led to a 50% enhancement in sulphate, relative to upwind conditions.There was a substantial amount of intersite correlation in the day to day variations in H+, SO42− , PM2.5 and PM10 (fine + coarse particles) concentrations, which is due to the influence of synoptic-scale meteorology and the relatively long atmospheric lifetime of fine particles. Sulphate was the most regionally homogenous species. Pearson correlation coefficients comparing SO42− between sites ranged from 0.6 to 0.9, depending on site separation and lag time. In many cases, particle episodes were observed to move across the entire eastern portion of Canada with about a two-day lag between the SO42− levels in southern Ontario and in southern Nova Scotia.  相似文献   

3.
Electron microscopy-energy dispersive spectroscopy (EM/EDS) can be used to determine the elemental composition of individual particles. However, the accuracy with which atmospheric particle compositions can be quantitatively determined is not well understood. In this work we explore sources of sampling and analytical bias and methods of reducing bias. Sulfuric acid [H2SO4] and ammonium sulfate [(NH4)2SO4] particles were collected on beryllium, silicon, and carbon substrates with similar deposition densities. While [(NH4)2SO4] particles were observed on all substrates, [H2SO4] and ammonia-treated [H2SO4] particles could not be found on beryllium substrates. Interactions between the substrate and sulfuric acid particles are implicated. When measured with EM/EDS, [H2SO4] particles exposed to ammonia overnight were found having lower beam damage rates (0.000 ± 0.002 fraction s−1) than those without any treatment (0.023 ± 0.006 fraction s−1) For laboratory-generated [C10H6(SO3Na)2] particles, the composition determined using the experimental k-factors evaluated from independent particle standards of similar composition and size shows an error less than 20% for all constituents, while greater than 78% errors were found when k-factors were calculated from the theory. This study suggests (1) that sulfate beam damage can be reduced by exposure of atmospheric particle samples to ammonia before analysis, (2) that beryllium is not a suitable substrate for atmospheric particle analysis, and (3) calibration (k-factor determination) using particle standards of similar size and composition to particles present in the atmosphere shows promise as a way of improving the accuracy of quantitative EM analysis.  相似文献   

4.
Numerical sensitivity tests and four months of complete model runs have been conducted for the Routine Deposition Model (RDM). The influence of individual model inputs on dry deposition velocity as a function of land-use category (LUC) and pollutant (SO2, O3, SO2−4 and HNO3) were examined over a realistic range of values for solar radiation, stability and wind speed. Spatial and temporal variations in RDM deposition velocity (Vd) during June – September 1996 time period generated using meteorological input from a mesoscale model run at 35 km resolution over north-eastern North America were also examined. Comparison of RDM Vd values to a variety of measurements of dry deposition velocities of SO2, O3, SO2−4 and NHO3 that have been reported in the literature demonstrated that RDM produces realistic results. Over northeastern NA RDM monthly averaged dry deposition velocities for SO2 vary from 0.2 to 3.0 cm s−1 with the highest deposition velocities over water surfaces. For O3, the monthly averaged dry deposition velocities are from 0.05 to 1.0 cm s−1 with the lowest values over water surfaces and the highest over forested areas. For HNO3, the monthly averaged dry deposition velocities have the range of 0.5 to 6 cm s−1, with the highest values for forested areas. For SO2−4, they range from 0.05–1.5 cm s−1, with the lowest values over water and the highest over forest. The monthly averaged dry deposition velocities for SO2 and O3 are higher in the growing season compared to the fall, but this behaviour is not apparent for HNO3 and sulphate. In the daytime, the hourly averaged dry deposition velocities for SO2, O3, SO2−4 and HNO3 are higher than that in the nighttime over most of the vegetated area. The diurnal variation is most evident for surfaces with large values for leaf area index (LAI), such as forests. Based on the results presented in this paper, it is concluded that RDM Vd values can be combined with measured air concentrations over hourly, daily or weekly periods to determine dry deposition amounts and with wet deposition measurements to provide seasonal estimates of total deposition and estimates of the relative importance of dry deposition.  相似文献   

5.
Bacteria inactivation and natural organic matter oxidation in river water was simultaneously conducted via photo-Fenton reaction at “natural” pH (6.5) containing 0.6 mg L−1 of Fe3+ and 10 mg L−1 of H2O2. The experiments were carried out by using a solar compound parabolic collector on river water previously filtered by a slow sand filtration system and voluntarily spiked with Escherichia coli. Fifty five percent of 5.3 mg L−1 of dissolved organic carbon was mineralized whereas total disinfection was observed without re-growth after 24 h in the dark.  相似文献   

6.
In arid and semi-arid environments, artificial recharge or reuse of wastewater may be desirable for water conservation, but NO3 contamination of underlying aquifers can result. On the semi-arid Southern High Plains (USA), industrial wastewater, sewage, and feedlot runoff have been retained in dozens of playas, depressions that focus recharge to the regionally important High Plains (Ogallala) aquifer. Analyses of ground water, playa-basin core extracts, and soil gas in an 860-km2 area of Texas suggest that reduction during recharge limits NO3 loading to ground water. Tritium and Cl concentrations in ground water corroborate prior findings of focused recharge through playas and ditches. Typical δ15N values in ground water (>12.5‰) and correlations between δ15N and ln CNO3–N suggest denitrification, but O2 concentrations ≥3.24 mg l−1 indicate that NO3 reduction in ground water is unlikely. The presence of denitrifying and NO3-respiring bacteria in cores, typical soil–gas δ15N values <0‰, and decreases in NO3–N/Cl and SO42−/Cl ratios with depth in cores suggest that reduction occurs in the upper vadose zone beneath playas. Reduction may occur beneath flooded playas or within anaerobic microsites beneath dry playas. However, NO3–N concentrations in ground water can still exceed drinking-water standards, as observed in the vicinity of one playa that received wastewater. Therefore, continued ground-water monitoring in the vicinity of other such basins is warranted.  相似文献   

7.
To investigate the chemical characteristics of precipitation in the polluted coastal atmosphere, a total of 46 event-based precipitation samples were collected using a wet-only automatic precipitation collector from September 2006 to October 2007 at metropolitan Newark, New Jersey in the US East Coast. Samples were analyzed by ion chromatography for the concentrations of major inorganic ions (Cl, NO3, SO42−, F, NH4+, Ca2+, Mg2+, Na+, K+) and organic acid species (CH3COO, HCOO, CH2(COO)22−, C2O42−). Selected trace metals (Sb, Pb, Al, V, Fe, Cr, Co, Ni, Cu, Zn, Cd) in samples were determined by ICPMS. Mass concentration results show that SO42− was the most dominant anion accounting for 51% of the total anions, controlling the acidity of the precipitation. NH4+ accounted for 48.6% of the total cations, dominating the precipitation neutralization. CH3COO and HCOO were the two dominant water-soluble organic acid species, accounting for 42% and 40% of the total organic acids analyzed, respectively. Al, Zn and Fe were the three major trace metals in precipitation, accounting for 34%, 27%, and 25% of the total mass of metals analyzed. The pH values in precipitation ranged from 4.4 to 4.9, indicating an acidic nature. Enrichment Factor (EF) Analysis showed that Na+, Cl, Mg2+ and K+ in the precipitation were primarily of marine origin, while most of the Fe, Co and Al were from crust sources. Pb, V, Cr, Ni were moderately enriched with EFs ranging 43–410, while Zn, Sb, Cu, Cd and F were highly enriched with EFs > 700, indicating significant anthropogenic influences. Factor analysis suggests 6 major sources contributing to the observed composition of precipitation at this location: (1) nitrogen-enriched soil, (2) secondary pollution processes, (3) marine sources, (4) incinerations, (5) oil combustions, and (6) malonate–vanadium enriched sources. To further explore the source–precipitation event relationships and seasonality, cluster analysis was performed for all precipitation events. Results show that about half of the precipitation events were characterized by mixed sources. Significant influences of nitrogen-enriched soil and marine sources were associated with precipitation events in spring and autumn, while secondary pollution processes, incineration and oil combustion contributed greatly in summer.  相似文献   

8.
On the basis of the recently estimated emission inventory for East Asia with a resolution of 1×1°, the transport and chemical transformation of sulfur compounds over East Asia during the period of 22 February through 4 May 2001 was investigated by using the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system with meteorological fields calculated by the regional atmospheric modeling system (RAMS). For evaluating the model performance simulated concentrations of sulfur dioxide (SO2) and aerosol sulfate (SO42−) were compared with the observations on the ground level at four remote sites in Japan and on board aircraft and vessel during the transport and chemical evolution over the Pacific and Asian Pacific regional aerosol characterization experiment field campaigns, and it was found that the model reproduces many of the important features in the observations, including horizontal and vertical gradients. The SO2 and SO42− concentrations show pronounced variations in time and space, with SO2 and SO42− behaving differently due to the interplay of chemical conversion, removal and transport processes. Analysis of model results shows that emission was the dominant term in regulating the SO2 spatial distribution, while conversion of SO2 to SO42− in the gas phase and the aqueous phase and wet removal were the primary factors that controlled SO42− amounts. The gas phase and the aqueous phase have the same importance in oxidizing SO2, and about 42% sulfur compounds (25% in SO2) emitted in the model domain was transported out, while about 57% (35% by wet removal processes) was deposited in the domain during the study period.  相似文献   

9.
Perfluorooctane sulfonate (PFOS), a widely used mist suppressant in hard chrome electroplating industry, has been listed in the Stockholm Convention for global ban. 6:2 Fluorotelomer sulfonate (6:2 FTS) acid and salts have been adopted as alternative products in the market, but no data about their abiotic degradation has been reported. In the present study, the degradability of 6:2 FTS potassium salt (6:2 FTS-K) was evaluated under various advanced oxidation processes, including ultraviolet (UV) irradiation, UV with hydrogen peroxide (H2O2), alkaline ozonation (O3, pH = 11), peroxone (O3/H2O2), and Fenton reagent oxidation (Fe2+/H2O2). UV/H2O2 was found to be the most effective approach, where the degradation of 6:2 FTS-K followed the pseudo-first-order kinetics. The intermediates were mainly shorter chain perfluoroalkyl carboxylic acid (C7 to C2), while sulfate (SO4 2?) and fluoride (F?) were found to be the final products. The high yields of SO4 2? and F? indicate that 6:2 FTS-K can be nearly completely desulfonated and defluorinated under UV/H2O2 condition. The degradation should firstly begin with the substitution of hydrogen atom by hydroxyl radicals, followed by desulfonation, carboxylation, and sequential “flake off” of CF2 unit. Compared with PFOS which is inert in most advanced oxidation processes, 6:2 FTS-K is more degradable as the alternative.  相似文献   

10.
A series of experiments using bulk precipitation collectors of the type used in the UK precipitation chemistry network measured the amounts of NH4+, SO42− and other ions that could be washed from funnels (diameter 15 cm) exposed to a wide range of NH3 and SO2 concentrations over periods from hours to days. In dry conditions, the average deposition flux of NH3 was between 50 and 120 nmol NH4+ funnel−1 d−1 (0.1–0.3 kg N ha−1 yr−1), and was independent of the concentration of NH3. Dry deposition of NH3 to wet funnels at small NH3 concentrations was almost 5 times that to dry funnels under the same conditions (average 240 nmol funnel−1 d−1; 0.7 kg ha−1 yr−1), and increased with increasing NH3 concentrations. The amount of NH4+ ions remaining on the funnel surface was inversely proportional to the vapour pressure deficit during the experiment. This result was interpreted as a dependence on the duration of surface wetness, with greater deposition of NH4+ when evaporation rates of surface water were small.The amount of SO2 deposited on funnel surfaces was closely related to the amount of NH3 deposited, in both wet and dry conditions, but was not strongly correlated with the SO2 concentration. At low NH3 and SO2 concentrations the average deposition to dry funnels was 70 nmol SO42− funnel−1 d−1 (0.5 kg ha−1 yr−1), and to wet funnels was approximately 2.5 times larger. The results are interpreted in terms of the balance between the rate of evaporation of surface water, and the rate of oxidation of SO2, which leads to the ‘fixing’ of NH4+ ions on the surface as involatile salts.It is predicted that dry deposition of NH3 to funnel surfaces across the UK Secondary Network could account for as much as one-half of the measured bulk wet deposition at sites where wet deposition of NH4–N is small. The amount of dry deposition depends on how long and how often funnel surfaces are wetted by rain or dew, and on the air concentrations of NH3. These predictions are based on funnels being wetted only once per day. More frequent wetting would increase the contribution from dry deposition, and the consequent overestimate of wet deposition of NH4–N across the UK by using data obtained from bulk collectors. To some extent this overestimate may be offset by microbial degradation and loss of NH4–N in weekly bulk precipitation samples during collection and storage.  相似文献   

11.
Throughfall and bulk precipitation chemistry were studied for five years (June 1994–May 1999) at two high elevation forest sites (Val Gerola and Val Masino) which were known to differ in terms of tree health, as assessed by live crown condition. The ion concentration of bulk precipitation samples did not differ significantly between sites, except for Mg2+, while the throughfall concentrations differed in the measured values of H+, N-NO3, Cl, Na+, K+, DOC and weak organic acids. The results of the application of the canopy exchange model indicated a higher contribution from the dry deposition of N-NO3, N-NH4+ and H+ at Val Gerola, where the damage symptoms were more evident. In addition, the canopy leaching of Ca2+, K+ and weak organic acids were 47%, 21% and 27% higher at Val Gerola than at Val Masino. Annual SO42− deposition fluxes (21.3 kg ha−1 yr−1 at Val Masino and 23.6 kg ha−1 yr−1 at Val Gerola) were similar to those reported for moderately polluted European and U.S. sites. Annual N loads were 13.6 and 13.1 kg ha−1 yr−1 in the bulk input, and 15.0 and 18.0 kg ha−1 yr−1 in throughfall inputs, at Val Masino and Val Gerola, respectively. The contribution of the organic fraction to the total N atmospheric deposition load is significant, constituting 17% of the bulk flux and 40% of the throughfall flux. Measured nitrogen loads exceed the critical nutrient loads by several kg N ha−1 at both stations. In particular the nitrogen throughfall load at Val Gerola was about 3 times higher than the critical values.  相似文献   

12.
Aqueous solutions of Fenton's reagent (Fe2+ + H2O2) have been used to effect the total decomposition of the chlorophenols: 2-chlorophenol, 3-chlorophenol, 4-chlorophenol, 3,4-dichlorophenol and 2,4,5-trichlorophenol. The mineralization of these chlorinated aromatic substrates to CO2 and free Cl has been studied as a function of [Fe2+] and [HClO4]. Increasing the concentration of Fe2+ enhances the decomposition process, while an increase in the concentration of HClO4, inhibits the reaction. The presence of Fe3+ alone (without any Fe2+) with H2O2 has no effect on the degradation of the chlorophenols. In all cases, the stoichiometric quantity of free Cl was obtained at the completion of the decomposition reaction; but the rates of disappaearance of the chlorophenol and of the formation of the Cl are not similar. This suggests that some chlorinated aliphatic species may be formed as possible intemediates.  相似文献   

13.
Monthly and annual means of main anions (SO42−, NO3, Cl) and summed base cations (Ca2+, Mg2+, K+, Na+) in bulk precipitation were studied at 10 stations during an 8-year monitoring period. The data showed statistically significant decreasing trends in most cases. Average declines of mean annual volume-weighted concentrations for both anions and cations were about two-fold. Despite the decrease, the loads of S and cations are still relatively high in Estonia (about 4–14 kg S ha−1 and 0.6–1.2 keq ha−1, respectively) compared with the loads in Finland and Sweden. Estimated linear decline trends followed the same pattern as annually combusted oil shale from Estonian power plants and emissions of SO2 and fly ash. Recent trends in chemical composition of bulk precipitation at the monitoring stations reflected economic changes in Estonia as well as transboundary fluxes from neighbouring countries.  相似文献   

14.
The Nandong Underground River System (NURS) is located in a typical karst agriculture dominated area in the southeast Yunnan Province, China. Groundwater plays an important role for social and economical development in the area. However, with the rapid increase in population and expansion of farm land, groundwater quality has degraded. 42 groundwater samples collected from springs in the NURS showed great variation of chemical compositions across the study basin. With increased anthropogenic contamination in the area, the groundwater chemistry has changed from the typical Ca–HCO3 or Ca (Mg)–HCO3 type in karst groundwater to the Ca–Cl (+ NO3) or Ca (Mg)–Cl (+ NO3), and Ca–Cl (+ NO3 + SO4) or Ca (Mg)–Cl (+ NO3 + SO4) type, indicating increases in NO3, Cl and SO42− concentrations that were caused most likely by human activities in the region. This study implemented the R-mode factor analysis to investigate the chemical characteristics of groundwater and to distinguish the natural and anthropogenic processes affecting groundwater quality in the system. The R-mode factor analysis together with geology and land uses revealed that: (a) contamination from human activities such as sewage effluents and agricultural fertilizers; (b) water–rock interaction in the limestone-dominated system; and (c) water–rock interaction in the dolomite-dominated system were the three major factors contributing to groundwater quality. Natural dissolution of carbonate rock (water–rock interaction) was the primary source of Ca2+ and HCO3 in groundwater, water–rock interaction in dolomite-dominated system resulted in higher Mg2+ in the groundwater, and human activities were likely others sources. Sewage effluents and fertilizers could be the main contributor of Cl, NO3, SO42−, Na+ and K+ to the groundwater system in the area. This study suggested that both natural and anthropogenic processes contributed to chemical composition of groundwater in the NURS, human activities played the most important role, however.  相似文献   

15.
The use of clays to sequestrate organic pollutants. Leaching experiments   总被引:1,自引:0,他引:1  
Leaching experiments are performed from clay-pollutant systems in order to evaluate the capability of clays to sequestrate organic pollutants from wastewaters. Reference kaolinite KGa-1b, montmorrillonite SWy-2 and reference soil BCR®-700 are the sorbent materials. 2,4,6-trichloroaniline (2,4,6-TCA) and 4-chlorophenol (4-CP) are the typical pollutants, sorbed at amounts of 10.0 mg g−1 and 5.8 mg g−1 on SWy-2 and 7.3 mg g−1 and 2.2 mg g−1 on KGa-1b, respectively.The leaching agents are ultrapure water and model solutions of acid rain and surface waters that simulate meteoric leaching. 1.0 mM HNO3, 1.0 mM H2SO4 solutions and a methanol/water 50/50 (v/v) mixture simulate leaching agents of industrial source.The results are compared and the preferential capability of the clays to sequestrate the more lipophilic 2,4,6-TCA is evidenced.The bond interactions are discussed and explained through preferential adsorption reactions. For montmorrillonite also a simultaneous intercalation in the phyllosilicate interlayer is proposed.  相似文献   

16.
The ability of free ferrous ion activated persulfate (S2O82−) to generate sulfate radicals (SO4) for the oxidation of trichloroethylene (TCE) is limited by the scavenging of SO4 with excess Fe2+ and a quick conversion of Fe2+ to Fe3+. This study investigated the applicability of ethylene-diamine-tetra-acetic acid (EDTA) chelated Fe3+ in activating persulfate for the destruction of TCE in aqueous phase under pH 3, 7 and 10. Fe3+ and EDTA alone did not appreciably degrade persulfate. The presence of TCE in the EDTA/Fe3+ activated persulfate system can induce faster persulfate and EDTA degradation due to iron recycling to activate persulfate under a higher pH condition. Increasing the pH leads to increases in pseudo-first-order-rate constants for TCE, S2O82− and EDTA degradations, and Cl generation. Accordingly, the experiments at pH 10 with different EDTA/Fe3+ molar ratios indicated that a 1/1 ratio resulted in a remarkably higher degradation rate at the early stage of reaction as compared to results by other ratios. Higher persulfate dosage under the EDTA/Fe3+ molar ratio of 1/1 resulted in greater TCE degradation rates. However, increases in persulfate concentration may also lead to an increase in the rate of persulfate consumption.  相似文献   

17.
This paper describes the development of a detailed dry deposition model for routine computation of dry deposition velocities of SO2, O3, HNO3 and fine particle SO42− across much of North America. Four different dry deposition/surface exchange sub-models have been combined with the current Canadian weather forecast model (Global Environmental Multiscale model) with a 3 h time resolution and a horizontal spatial resolution of 35 km. The present model uses the US Geological Survey North American Land Cover Characteristics data to obtain fourteen different land use and five seasonal categories. The four sub-models used are a multi-layer model for gaseous species over taller canopy land-use types, a big-leaf model for gaseous species over lower canopies (including bare soil and water) and for HNO3 under all surface types and, two different models for SO42−, one for tall canopies and the other for short canopies. All necessary parameters for each sub-model, chemical species, land-use and seasonal categories have been selected from available data libraries or from the values reported in the literature. The purpose for developing this model (referred to as the Routine Deposition Model (RDM)), when coupled with air concentration data, is to provide estimates of seasonal dry deposition, which can be combined with wet deposition to produce total deposition estimates. Model theory is discussed in this paper and model sensitivity tests and results will be presented in a companion paper.  相似文献   

18.
Chemical composition of rainwater was studied in the northeastern Romania, Iasi region, and the concentrations of major inorganic and organic ions were measured in samples collected between April 2003 and December 2006. The pH of the rainwater is 5.92 (volume weighted mean average, VWM) suggesting a sufficient load of alkaline components neutralizing its acidity. On average, 97% of the acidity in the collected samples is neutralized by CaCO3 and NH3. Clear seasonal variations were observed for some of the identified ions (e.g., SO42−, NO3, Ca2+, NH4+). The data obtained during this work revealed that both concentrations and fluxes of anthropogenic source-related ions (e.g., SO42−, NO3 and NH4+) are among the highest reported for European sites. It is shown that meteorology and long-range transport processes may concur to their high levels.  相似文献   

19.
Metropolitan Taipei, which is located in the subtropical area, is characterized by high population and automobile densities. For convenience, most primary schools are located near major roads. This study explores the exposure of acid aerosols for schoolchildren in areas in Taipei with different traffic densities. Acid aerosols were collected by using a honeycomb denuder filter pack sampling system (HDS). Experimental results indicated that the air pollutants were significantly correlated with traffic densities. The ambient air NO2, SO2, HNO3, NO3, SO42−, and aerosol acidity concentrations were 31.3 ppb, 4.7 ppb, 1.3 ppb, 1.9 μg m−3, 18.5 μg m−3, and 49.5 nmol m−3 in high traffic density areas, and 6.1 ppb, 1.8 ppb, 0.9 ppb, 0.7 μg m−3, 8.8 μg m−3 and 14.7 nmol m−3 in low traffic density areas. The exposure levels of acid aerosols for schoolchildren would be higher than the measurements because the sampling height was 5 m above the ground. The SO2 levels were low (0.13–8.03 ppb) in the metropolitan Taipei. However, the SO42− concentrations were relatively high, and might be attributed to natural emissions of sulfur-rich geothermal sources. The seasonal variations of acid aerosol concentrations were also observed. The high levels of acidic particles in spring time may be attributed to the Asian dust storm and low height of the mixture layer. We conclude that automobile contributed not only the primary pollutants but also the secondary acid aerosols through the photochemical reaction. Schoolchildren were exposed to twice the acid aerosol concentrations in high traffic density areas compared to those in low traffic density areas. The incidence of allergic rhinitis of schoolchildren in the high traffic density areas was the highest in spring time. Accompanied by high temperature variation and high levels of air pollution in spring, the health risk of schoolchildren had been observed.  相似文献   

20.
Deep percolation of nitrate can contribute to the deterioration of groundwater resources. Leaching of nitrate is a complex process affected by fertilizer and irrigation practices, efficiency of N use by the crop, and how the soil's water holding capacity and water transmission properties are affected by soil texture. Depleted (15NH4)2SO4 fertilizer at N rates of 0, 125, 250 and 375 kg ha−1 was applied annually for 3 years to continuous corn grown within three different water regimes. This time period and the labeled N permitted an evaluation of N use efficiency by the crop and NO3 leaching and carryover on a Weld silty clay loam, a fine-textured soil, typical of the “hardland” soils of the semi-arid Great Plains. Three water regimes, W1 ( 1.5 ET), W2 ( ET) and W3 ( 0.8 ET), were used. Beneath each plot within each water regime, Duke-Haise vacuum trough extractors were installed under undisturbed soil profiles at 1.22-m depth to measure weekly percolate and the NO3 concentration in the percolate. The corn was harvested in the fall in the dent stage to measure the total above-ground biomass N uptake. Soil profiles (1.8 m) were sampled annually in the fall after crop harvest to determine NO3---N in the soil or carryover.Great variability was encountered in measuring the amount of extractor water and its NO3 content under each water regime, which made estimates of N03 leaching losses unreliable. Also, the variability demonstrates formidable problems in quantifying percolation losses with vacuum trough extractors under undisturbed fine-textured soil profiles. With the highest N rate of 376 kg ha−1 yr−1 and within the water regime W1, where leaching was expected to be greatest, only 1% of the cumulative labeled N applied was found in extractor waters and most movement of the labeled N into extractors occurred the third year. The 125-kg-ha−1 yr−1 fertilizer N rate significantly increased the crop yield over the unfertilized plots without increasing residual NO3---N accumulation; whereas fertilizer N rates of > 125 kg ha−1 yr−1 did not appreciably increase plant yields over the 125-kg-ha−1-N rate, but did appreciably increase residual NO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号