首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探讨深圳市农林土壤重金属的污染现状,系统采集了深圳市菜地、果园、林地和荒地4种土地利用的52个土壤样品,测定了Cu、Pb、Cd、Zn、Cr、Ni6种重金属的全量,对深圳市农林土壤重金属20余年来的累积状况进行了分析并进行了初步的风险评价.结果发现,深圳农林土壤均存在不同程度的重金属累积,总体而言,Cu、Pb、Zn、Cr和Ni的累积较轻,Zn的最大含量尚未超过其80年代末背景值的最大值;Cd的累积最为严重,其最大含量已为背景最大值的16倍.以GB15618-1995为标准,对深圳农林土壤的重金属风险进行评价后发现,Cu的污染最轻,仅20%的菜地土壤超过国家一级标准,Pb50%超过国家一级标准,但尚未超过二级标准;Zn、Cr和Ni均有一定比例的样点超过二级标准,最少4%,最高50%,但未有超过三级标准的样点;Cd的风险最大,不仅有大量超过一、二级标准的样点,而且超过三级标准的样点也占有一定的比例(菜地、果园、林地和荒地土壤中Cd含量超过三级标准的比例分别为10%、23%、29%和50%).深圳农林土壤中的Cd污染应该引起相关部门的重视.  相似文献   

2.
Repeated applications of metal-contaminated sewage sludge can have a drastic effect on soil levels of trace elements and lead to serious toxicity effects in plants. In some cases, land can be rendered sterile.It has been demonstrated that contamination of soils with respect to cadmium, copper, lead, mercury, nickel and zinc is largely irreversible, although there does appear to be a long-term tendency for these metals to become progressively less available to plants over a long period of time. Most national guidelines designed to regulate the disposal of sewage sludge on agricultural land are based on the assumption that relatively rapid fixation of contaminant metals does take place in the soil after sludge application. There is a dearth of information relating to the rates at which potentially toxic-elements commonly present in sewage sludge become immobilised in soils, although it is clear that contaminant boron can be leached down the profile in the short term.Evidence is presented that contamination of top soil can persist for a period of six years after a single application of sludge (150 tonnes dry matter/ha). Over this period, there was little change in available levels of boron, cadmium, copper, lead and zinc in the top soil and the degree of enhancement of these elements in perennial ryegrass grown in the sludge-treated area remained more or less unchanged.  相似文献   

3.
The investigations were made to determine the total contents of Fe, Mn, Zn, Cu, Pb, Cd, Ni and Cr in the roadside soils and rocks of the Sierra Nevada Mountains in Spain. There were differences in both the age and lithology of the bed-rock in the study area. The surface soil layer is primarily enriched with lead in relation to the bed-rock, but zinc, manganese, and cadmium also occur.Lead, zinc and cadmium concentrations show a decrease with increasing distance from the road, whereas the levels of iron, manganese, copper, nickel and chromium do not show such a variation. The change in lead and zinc concentrations with increasing distance from the road is related to the topography of the area immediately adjacent to the road. On the descending slopes the concentrations of these metals remain unchanged or increase with the increasing distance from the road, whereas on the ascending slopes they show a clear decrease.  相似文献   

4.
A reconnaissance soil geochemical and concomitant plant survey based on 318 soil (0-15 cm) and 122 plant samples was used for the assessment of heavy metal pollution of agricultural soils and crops of Thailand. Arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) were determined in soils using aqua regia digestion, and in plants using nitric acid digestion. Organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) were determined on the soil samples using appropriate procedures. Results indicated that concentrations of heavy metals varied widely among the different regions of Thailand. Regression analysis between the concentrations of metals in soil (aqua regia extractable) and edible plant parts indicated a small but positive relationship for Cd in all the plants sampled in the survey (R2 = 0.081, p < 0.001). There was also a positive relationship between soil and plant Cd concentrations in rice (R2 = 0.242, p < 0.010), and negative relationships for Zn in rice (R2 = 0.385, p < 0.001), and Cu (R2 = 0.355, p < 0.001) and Zn (R2 = 0.122, p < 0.026) in glutinous rice. Principal component analysis of the soil data suggested that concentrations of As, Co, Cr, Cu, Hg, Ni and Pb were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus, the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. On the other hand, Cd and Zn were strongly correlated with organic matter and concentrations of available and aqua regia extractable P. This is attributed to input of contaminants in agricultural fertilisers and soil amendments (e.g. manures, composts).  相似文献   

5.
Since analysis of both soil and plants are useful to assess contamination of a geographic area, concentrations of five representative metals: copper (Cu), zinc (Zn), cadmium (Cd), lead (Pb), and iron (Fe) in soil and associated plants were measured by atomic absorption spectroscopy. Samples were collected from four different Egyptian regions (El-mehala El-kobra, Kafr El-Sheikh, Kafr El-zayat, and Al-fayoum) during spring and summer 2010. Concentrations of the selected metals in agricultural soils were significantly different among locations and seasons. Concentrations of Cd and Fe in soils at the four locations exceeded the maximum allowable concentrations for Cd (8 mg/kg, dry mass (dm)) and Fe (1000 mg/kg, dm). Accumulation was different for clover and cotton. Clover blossoms grown in soil from Kafr El-zayat contained the greatest concentrations of Cu, Zn, Pb, and Fe. Cotton flowers from El-mehala El-kobra accumulated the highest levels of Cd. Concentrations of Cd and Pb in both clover and cotton flowers from the four locations exceeded maximum allowable concentrations (3 mg/kg, dm) for both Cd and Pb. Using such agricultural soils for cultivation of edible crops for consumption may result in chronic hazards to human health.  相似文献   

6.
Mytilus edulis planulatus (Lamarck) were collected from Howden, South-east Tasmania in autumn 1981. Interaction effects of cadmium, copper and zinc during accumulation by mussels exposed for ten days to all three metals simultaneously were examined in a series of experiments in which each metal was tested at three concentrations. In general, interaction effects were most evident at the highest concentrations tested (20 g l-1 Cd; 20 g l-1 Cu; 200 g l-1 Zn) and led to a reduction in the accumulation of cadmium and an increase in that of copper and zinc. More specifically, high levels of zinc caused a decrease in cadmium uptake and an increase in copper accumulation. The presence of copper resulted in depressed cadmium accumulation while zinc accumulation increased. Cadmium tended to enhance zinc accumulation, but copper accumulation was only affected to any great extent when zinc was also present.  相似文献   

7.
Surface and profile Phaeozem soil samples from 31 locations affected by various anthropogenic activities such as mining, chemical manufacturing, traffic emission and pesticide application were collected in Heilongjiang Province and Jilin Province, northeast China. The range of total concentrations of four heavy metals Cd, Pb, Cu and Zn in the soil was 0.011–3.137, 10.31–62.34, 9.74–51.21 and 39.54–247.59 mg kg−1, respectively, determined using the acidic digestion procedure. Four methods including single contamination evaluation, background concentration comparison, surface/subsurface concentration comparison and exchangeable fraction evaluation were used to evaluate the extent of metal contamination in Phaeozem. The results indicated that different activities increased the concentrations of the heavy metals in surface soils, where high concentrations of cadmium and lead were found close to chemical plants and in the suburbs of the investigated cities. The four methods showed a general trend of increased soil contamination with heavy metals. Cadmium was of the most concern compared with the other contaminated elements in the study area, due to the long-term phosphatic fertilizer utilization and industrial activities. The proper evaluation method for cadmium contamination was the background concentration comparison, while for zinc and copper was the single contaminative index evaluation. Cadmium and lead could be the potential environmental risk in the Phaeozem area based on the different evaluations.  相似文献   

8.
干旱区绿洲土壤中重金属的形态分布及生物有效性研究   总被引:6,自引:0,他引:6  
测定了Cd、Pb、Zn和Ni等重金属在不同处理土壤中的全量和各赋存形态,以及它们在盆栽试验油菜(Brassica cole)中的质量分数,并利用Pearson相关系数分析了该区土壤-油菜体系的生物有效性。结果表明,供试绿洲土壤原状土中,Cd、Pb、Zn和Ni均以稳定的残渣态形式存在;而在处理土壤中,重金属被钝化的量有限,Cd的存在形式主要以碳酸盐态为主,Pb、Zn和Ni则主要以铁锰氧化态为主。根据相关性分析,油菜根部和叶部的Ni质量分数均与土壤中Ni的各非残渣态分布系数有相关性,表明当土壤中Ni以非残渣态存在时,活动性Ni的质量分数较高,其被生物吸收利用的可能性也较大;油菜根部的Zn质量分数与土壤中Zn的碳酸盐结合态分布系数显著的正相关性;油菜各部位Cd和Pb的质量分数与土壤中Cd和Pb的各形态分布系数之间无显著相关关系。  相似文献   

9.
T. J. Ward 《Marine Biology》1987,95(2):315-321
Temporal variation in the concentrations of Cd, Cu, Mn, Ni, Pb and Zn in leaves of the seagrass Posidonia australis was studied at three sites near a lead smelter on the shore of Spencer Gulf, a large hypersaline marine embayment in South Australia, on four occasions from October 1980 to September 1981. Concentrations of Cd, Mn, Pb and Zn of up to 541, 537, 379 and 4241 g g-1, respectively, were found in leaves collected from the site nearest to the smelter. A substantial temporal variation in the concentrations of these metals in samples from all sites resulted from the combined effect of leaf age and collection strategy. Concentrations of Cd, Cu and Zn in the leaf epibiota were lower than those in the leaves, but the reverse was true for Mn and Ni. The use of seagrass leaves as sentinel accumulators for Cd, Pb and Zn must be based on collections made at the same time of year, or otherwise account for the effect of leaf age on concentrations of the metals in the samples.  相似文献   

10.
Processes that control the mobility, transformation and toxicity of metals in soil are of special importance in the root-developing zone. For this reason, there is a considerable interest in understanding trace elements (TEs) behavior in soil, emphasising the processes by which plants take them up. Increased root-zone salinity can affect plant TEs uptake and accumulation in plant tissue. Furthermore, copper (Cu) complexation by soil organic matter (SOM) is an effective mechanism of Cu retention in soils, controlling thus its bioavailability. Therefore, a greenhouse pot experiment was conducted to study the effects of soil Cu contamination in a saline environment on faba bean (Vicia faba L.) element uptake. Treatment with NaCl salinity was applied (control, 50 mM NaCl and 100 mM NaCl) on faba bean plants grown in a control and in a soil spiked with Cu (250 and 500 mg kg?1). Low and high SOM content trial variants were studied. Cu accumulation occurred in faba bean leaf, pod and seed. Cu contamination affected plant element concentrations in leaves (Na, Ca, Mg, Mn), pod (Zn, Mn) and seed (Mn, Mo, Zn). Root-zone salinity also affected faba bean element concentrations. Furthermore, Cu contamination—salinity and salinity—SOM interactions were significant for pod Cu concentration, suggesting that Cu phytoavailability could be affected by these interactions. Future research will be focused on the mechanisms of Cu translocation in plant and adaptation aspects of abiotic stress.  相似文献   

11.
铅锌冶炼厂土壤污染及重金属富集植物的研究   总被引:57,自引:4,他引:57  
对株洲市铅锌冶炼厂生产区进行了植被和土壤调查。结果表明,该厂土壤污染以镉铅锌(Cd、Pb、Zn)最为严重,尤其是重金属镉在土壤中含量超过背景值高达208倍,分析原因主要是由于大气尘降和雨水淋洗等使得污染加重。实验采集并分析测定了9种植物中重金属富集量,首次报道了土荆芥是一种铅超富集植物,其体内Pb质量分数高达3888mg/kg。另一种植物商陆能大量富集镉,具有地下部向地上部转运能力强、生物量大、富集总量高的特点,有很大研究价值和应用潜力。另外,荨麻对Zn有较强富集能力,这3种植物可分别用于铅、镉和锌等3种重金属污染土壤的植物修复。  相似文献   

12.
The study assessed the levels of some heavy metals in soils in the vicinity of a municipal solid waste dumpsite with a view to providing information on the extent of contamination, ecological risk of metals in the soils and human health risk to the residents in Uyo. Soil samples were collected in rainy and dry seasons and analyzed for metals (Pb, Cd, Zn, Mn, Cr, Ni and Fe) using atomic absorption spectrometry. The concentrations of heavy metals (mg/kg) at the dumpsite in rainy season were Pb (9.90), Zn (137), Ni (12.56), Cr (3.60), Cd (9.05) and Mn (94.00), while in dry season, the concentrations were Pb (11.80), Zn (146), Ni (11.82), Cr (4.05), Cd (12.20) and Mn (91.20). The concentrations of metals in the studied sites were higher than that of the control site (P < 0.05). Pollution indices studies revealed that soil samples from dumpsite and distances from 10 and 20 m east of the dumpsite were highly polluted with cadmium. Ecological risk assessment carried out showed that cadmium contributed 98–99 % of the total potentially ecological risk. No probable health risk was observed as the total hazard index of all the metals was less than one. However, children were found to be more susceptible to heavy metal contamination than adult.  相似文献   

13.
This study determined the concentration of three heavy metals zinc (Zn), lead (Pb), and cadmium (Cd) in soil and in a woody plant species, Milicia excelsa, at Ishiagu quarry, Nigeria. The highest soil concentrations of Zn, Pb, and Cd in soil were obtained at 1?m from the quarry site. In M. excelsa, the highest concentrations of Zn, Pb, and Cd were 3.12–9.1, 3.9–6.01, and 0.51–1.12?mg?kg?1, respectively. There were significant positive correlations between Cd and Zn (r?=?0.963) and Cd and Pb (r?=?0.974) in plants as well as between Cd and Pb (r?=?9.84) in soil. The level of Cd in soil reflected significant pollution compared to average global concentrations in soils.  相似文献   

14.
A regulation of internal levels of some essential metals has been observed in various animals, whereas the bioaccumulation of several non-essential metals parallels their overloads in water. In the mussel Mytilus edulis L., we have attempted to determine if such a phenomenon exists by comparing the patterns of accumulation of copper and zinc vs cadmium. With this aim, mussels collected in the Bay of Bourgneuf (France) in November 1983 were exposed to these metals for 16 d. At external levels of zinc as high as 100 gl-1, mussels were able to maintain a normal concentration in all groups of organs for 4 d. The ability of mussels to limit the bioaccumulation of copper and zinc varied from organ to organ, and decreased with higher levels of contamination and longer periods of exposure. In contrast, at the lowest experimental concentration and the lowest period of exposure, a significant increase of cadmium in mussel tissues was generally observed. Even at the highest sub-lethal doses, the levels of copper and zinc in mussel tissues were not much higher than the natural levels (contaminated:background ratios= 2.3 to 6.1), whereas the bioaccumulation of cadmium was less well restricted (contaminated:background ratios=136 to 192). The use of mussels as a bioindicator of pollution seems doubtful for essential metals, particularly as regards short-term pollution, since the levels of these trace elements in the organisms are largely independent of their concentration in the ambient seawater.  相似文献   

15.
The aim of the study was to assess the content, distribution, soil binding capacity, and ecological risk of cadmium and lead in the soils of Malopolska (South Poland). The investigation of 320 soil samples from differently used land (grassland, arable land, forest, wasteland) revealed a very high variation in the metal content in the soils. The pollution of soils with cadmium and lead is moderate. Generally, a point source of lead and cadmium pollution was noted in the study area. The highest content of cadmium and lead was found in the northwestern part of the area—the industrial zones (mining and metallurgical activity). These findings are confirmed by the arrangement of semivariogram surfaces and bivariate Moran’s correlation coefficients. Among the different types of land use, forest soils had by far the highest mean content of bioavailable forms of both metals. The results showed a higher soil binding capacity for lead than for cadmium. However, for both metals, extremely high (class 5) accumulation capacities were dominant. Based on the results, the investigated soils had a low (Pb) and moderate (Cd) ecological risk on living components. Soil properties, such as organic C, pH, sand, silt, and clay content, correlated with the content of total and bioavailable forms of metals in the soils. The correlations, despite being statistically significant, were characterized by very low values of correlation coefficient (r?=?0.12–0.20, at p?≤?0.05). Therefore, the obtained data do not allow to define any conclusions as to the relationships between these soil properties. However, it must be highlighted that there was a very strong positive correlation between the total content of cadmium and lead and their bioavailable forms in the soils.  相似文献   

16.
Pot and hydroponic trials as well as tests on samples collected in a mining area and in two different urban sites of Tuscany were carried out on Arum italicum Mill (Italian arum) plants. Zinc and cadmium contents were determined by differential pulse anodic stripping voltammetry (DPASV) in different organs of about 180 samples. After 65 days treatment, zinc and cadmium median contents in leaves of plants grown hydroponically in solutions containing both metals at different concentrations fell within the range of 281-2022 and 8.3-45.1 μg g-1 (dry weight), respectively. Some Italian arum plants were also cultivated in pots in the presence or absence of malate or citrate in order to evaluate the role of these ligands in zinc and cadmium accumulation. Citrate enhanced cadmium uptake compared to malate.  相似文献   

17.
Pot experiments were conducted on cole (Brassica) grown in soils jointly treated with traces of two heavy metals cadmium (Cd) and zinc (Zn). As the concentration of heavy metals in the soil increased, the uptake of these metals by the plants rose. However, the ratio of heavy metal concentration in soil to uptake by plants increased at a slower rate. Bioavailability of heavy metals considered between the roots and soil using non-linear regressions was shown to be statistically significant. Similarly, the bioavailability of these two heavy metals between leaves and roots using a linear regression was also statistically significant. The bioconcentration factors (BCFs) for Cd and Zn were 0.282 and 4.289, respectively. Significant variation of BCF with the heavy metal bioavailability in soil was noted from non-linear models. The transfer factors (TFs) were 4.49 for Cd and 1.39 for Zn. The Zn concentration in leaves under all treatments did not exceed threshold set standards, but Cd levels exceeded these standards when the concentration of Cd in the soil was more than 1.92 mg kg?1 dry weight (dw). Data indicate that cole (Brassica) is not a suitable crop for oasis soils because of plant contamination with heavy metals, especially Cd.  相似文献   

18.
To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world’s largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17–106, 17–87, and 3–7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg?1); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg?1, respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg?1). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.  相似文献   

19.
Heavy metals,occurrence and toxicity for plants: a review   总被引:5,自引:0,他引:5  
Metal contamination issues are becoming increasingly common in India and elsewhere, with many documented cases of metal toxicity in mining industries, foundries, smelters, coal-burning power plants and agriculture. Heavy metals, such as cadmium, copper, lead, chromium and mercury are major environmental pollutants, particularly in areas with high anthropogenic pressure. Heavy metal accumulation in soils is of concern in agricultural production due to the adverse effects on food safety and marketability, crop growth due to phytotoxicity, and environmental health of soil organisms. The influence of plants and their metabolic activities affects the geological and biological redistribution of heavy metals through pollution of the air, water and soil. This article details the range of heavy metals, their occurrence and toxicity for plants. Metal toxicity has high impact and relevance to plants and consequently it affects the ecosystem, where the plants form an integral component. Plants growing in metal-polluted sites exhibit altered metabolism, growth reduction, lower biomass production and metal accumulation. Various physiological and biochemical processes in plants are affected by metals. The contemporary investigations into toxicity and tolerance in metal-stressed plants are prompted by the growing metal pollution in the environment. A few metals, including copper, manganese, cobalt, zinc and chromium are, however, essential to plant metabolism in trace amounts. It is only when metals are present in bioavailable forms and at excessive levels, they have the potential to become toxic to plants. This review focuses mainly on zinc, cadmium, copper, mercury, chromium, lead, arsenic, cobalt, nickel, manganese and iron.  相似文献   

20.
This study was conducted to compare metals bioaccumulation in the Talitrid O. mediterranea collected from the banks of Bizerte lagoon. Individuals were exposed to a series of contaminated soil with different concentrations of cadmium, copper, and zinc. Biological and physiological responses were highlighted. Body metals concentrations were measured in the talitrid using flame atomic emission spectrometry. Results showed that after the second week, the mortality increased especially with cadmium exposure, and a mass gain was obtained between weeks for copper and zinc. Furthermore, the concentration factor indicated that O. mediterranea could be considered as a macroconcentrator of copper and zinc. Histopathological analysis showed that the different metals concentrations induced significant changes in the morphology and in the ultrastructural organisation of hepatopancreatic cells. Significant alterations obtained after metals exposure were the increase in the number of the majority cell organelles. Also, heavy metals were present in the form of numerous granules with different size in the cell surface. Furthermore, metals exposure affected the brush border causing the disruption of microvilli filament. Through these results, O. mediterranea could be a good indicator providing measurable responses. It could be an attractive candidate for the biochemical study of heavy metals toxicity in coastal ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号