首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this work was to determine the concentration of 234U and 238U and calculate the values of the 234U/238U activity ratio in waters and sediments from the various regions of the southern Baltic Sea: Gdańsk Deep, S?upsk Narrow and Bornholm Deep. The concentration of uranium in analysed sediments from southern Baltic increase with core depth to what probably is connected with diffusion from sediments to water through interstitial water, where uranium concentration is much higher than in bottom water. The highest concentrations of uranium were observed in sediments of S?upsk Narrow (0.66-7.11 mg kg(-1) d.w.) and S?upsk Bank (0.61-6.93 mg kg(-1) d.w.), the lowest in sediments from Bornholm Deep (0.54-3.77 mg kg(-1) d.w.). The 234U/238U activity ratio results indicated that the sedimentation of terrigenic material and Vistula River transport are the general sources of uranium in the southern Baltic sediments. The value of 234U/238U activity ratio in sediments from reduction areas from southern Baltic (Gdańsk Deep and Bornholm Deep) indicated that reduction process of U(VI) to U(IV) and removing of anthropogenic uranium from seawater to sediments constitutes a small part only in Gdańsk Deep.  相似文献   

2.
Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized.  相似文献   

3.
The amine-modified polyhydroxyethylmethacrylate (poly(HEMA))-grafted biomaterial (tamarind fruit shell, TFS) carrying carboxyl functional groups at the chain end (PGTFS-COOH) was prepared and used as an adsorbent for the removal of uranium(VI) from water and nuclear industry wastewater. FTIR spectral analysis revealed that U(VI) ions and PGTFS-COOH formed a chelate complex. The adsorption process was relatively fast, requiring only 120 min to attain equilibrium. The adsorption kinetic data were best described by the pseudo-second-order equation. The equilibrium adsorption data were correlated with the Sips isotherm model. The maximum U(VI) ions uptake with PGTFS-COOH was estimated to be 100.79 mg/g. The complete removal of 10 mg/L U(VI) from simulated nuclear industry wastewater was achieved by 3.5 g/L PGTFS-COOH. The reusability of the adsorbent was demonstrated over 4 cycles using NaCl (1.0 M) + HCl (0.5 M) solution mixture to de-extract the U(VI). The results show that the PGTFS-COOH tested is very promising for the recovery of U(VI) from water and wastewater.  相似文献   

4.
Activity concentration levels and ratios of (226)Ra, (210)Pb and (210)Po are presented in multicellular marine algae, molluscs, coral as well as in surface marine sediments collected from the shallower waters of the fringing reefs area extending towards north and south (Flamingo bay) of PortSudan harbour, Sudan. The analyses were performed adopting alpha-spectrometry, liquid scintillation and Cerenkov counting techniques. Surface sediments from this coastal region are poor in their radioactivity content in contrast to similar data reported from different coastal areas around the globe. There is surface enrichment of (210)Pb and (210)Po with respect to their progenitor (226)Ra as it is evident from the activity ratios of (210)Pb/(226)Ra (3.03+/-1.79) and (210)Po/(226)Ra (2.23+/-1.56). Among marine plants and animals investigated, the green algae species, Halimeda, and coral species, Favites, show substantial concentration of radium at 8.2Bq/kg and 21.9Bq/kg dry weight, respectively. Similarly, the highest concentration of (210)Po was met in Favites at 38.7Bq/kg followed by brown algae, Cystoseria sp., at 32.6Bq/kg. There is no variation seen among algal species for (210)Pb uptake, however, converse to radium and polonium, Favites (coral) was found to contain the minimum concentration of lead (3.88Bq/kg). In most species there is preferential accumulation of polonium over its parent radium as indicated by (210)Po:(226)Ra activity ratio with Cystoseria (brown algae) showing the highest value at 8.81. On the other hand, (210)Po:(210)Pb activity concentration ratio revealed that coral species Favites (9.97) and the brown algae Sargassum (1.85) have a greater tendency to accumulate (210)Po over (210)Pb, while in the rest of species; this ratio is less than unity.  相似文献   

5.
A reconnaissance study has been made on the distribution of 238U, 234U, 232Th and 230Th in soils, water, suspended particulate matter (SPM) and bottom sediments in the Kali river basin around Kaiga, its estuarine region and the adjacent Arabian Sea to obtain the baseline data of U-Th series nuclides in view of the commissioning of nuclear power reactors at Kaiga, near Karwar, on the southwest coast of India. Drainage basin soils developed over greywackes (the dominant litho-unit upstream) are lower in 238U/Al and 232Th/Al ratios by factors of 3-5 in comparison with those developed over tonalitic gneisses (the dominant litho-unit downstream). The dominance of the former type of soils is reflected in the composition of river-bottom sediments derived from the upstream drainage basin during the monsoon. The 232Th in bottom sediments tends to increase towards the estuarine and coastal areas, presumably due to deposition of heavy minerals and onshore transport of coastal sediments into the estuary. The dissolved U in the Kali river is low (0.001-0.02 microg/l) when compared to the major Indian rivers as the Kali river flows through U-poor greywackes. Thus, the input of dissolved U to the Kali estuary is dominated by sea water. Although there is some evidence for the removal of dissolved U at low salinity during estuarine mixing, its behaviour is conservative in the lower estuary (at higher salinities). The removal rate of dissolved U from the Kali river basin is similar to that reported from other tropical river basins. The U flux from all the west-flowing rivers of Peninsular India is estimated at 26.3 x 10(6) g/yr to the Arabian Sea which is about 2% of the flux from the Himalayan rivers to the Bay of Bengal.  相似文献   

6.
Water pollution, evident by negative values of redox potential in waters, occurs at the lagoonal coast located near the densely populated area of Fongafale Islet on Funafuti Atoll, Tuvalu, Central Pacific. Sediment microbial quinone analysis revealed that these coastal sediments exhibit 2.7–10.4 times more microbial biomass, significantly different microbial community structure and low microbial diversity, when compared to an undisturbed natural coastal sediment. Thus, the pollution is chronic. By considering the total land use/coverage on the islet, the situation of septic tank installations, temporal changes in water redox potential and Escherichia coli numbers in the coastal waters and the spatial distribution of acid volatile sulfide in the sediments, we conclude that domestic wastewater is the primary source of pollution. This pollution is proposed to occur via the following mechanism: during ebb tides, domestic wastewater leaking from bottomless septic tanks and pit toilets run off into the lagoonal coast. Tide changes control the pollution load of domestic wastewater.  相似文献   

7.
Ground and river waters of the upper Rhine valley (Alsace, France) were investigated for chemical composition of the major elements, Sr isotopes and radionuclides from the U and Th series. In particular, the isotope ratios and concentrations of Ra and Sr were used as geochemical tracers to distinguish between different types of water and their interactions. The bulk chemical analyses suggest that the surface waters in the Rhine valley can be described as mixtures between Ca-Na-HCO3-rich ground water and less mineralized slightly acidic river waters which have migrated through crystalline (mainly granitic) basement rocks of the Vosges mountains. Mixing of these waters yields positive correlation between bulk Sr, U, Ca and HCO3, indicating that carbonate-rich sediments are the main source of U and (non-radiogenic) Sr in the Rhine valley aquifers. The combination of the Ra and Sr isotope systems (228Ra/226Ra, 87Sr/86Sr) shows, however, that probably three sources contribute to the surface river waters in the upper Rhine valley, i.e. (i) a highly radiogenic crystalline component, (ii) a ground water source and, (iii) a third component from infiltrating Rhine water along the flow path of the parallel running river Ill in the northerly direction. The Sr and Ra isotope systems were also used to calculate small-scale mixing fractions of tributaries along the flow path of the Ill. Mixing ratios of non-pure end-member waters were determined using three isotope diagrams (i.e. 224Ra/226Ra vs. 228Ra/226Ra) and the results obtained with the Ra isotope system were found to be consistent with the data using Sr isotope relationships (i.e. 87Sr/86Sr vs. 1/Sr).  相似文献   

8.
Removal of uranium [U(VI)] from aqueous solutions with humic acid-immobilized zirconium-pillared clay (HA-Zr-PILC) was investigated using a batch adsorption technique. The adsorbent was characterized using XRD, FTIR, SEM, TG/DTG, surface area analyzer and potentiometric titration. The effects of pH, contact time, initial concentration, adsorbent dose, and adsorption isotherm on the removal process were evaluated. A maximum removal of 97.6 ± 2.1 and 94.7 ± 3.3% was observed for an initial concentration of 50 and 100 mg L−1, respectively at pH 6.0 and an adsorbent dose of 2.0 g L−1. Equilibrium was achieved in approximately 180 min. The mechanism for the removal of U(VI) ions by HA-Zr-PILC was based on an ion exchange reaction. The experimental kinetic and isotherm data were analyzed using a second-order kinetic equation and Langmuir isotherm model, respectively. The monolayer adsorption capacity for U(VI) removal was found to be 132.68 ± 5.04 mg g−1. An increase of temperature of the medium caused an increase in metal adsorption. Complete removal (≅100%) of U(VI) from 1.0 L of a simulated nuclear industry effluent sample containing 10.0 mg U(VI) ions was possible with 1.5 g of HA-Zr-PILC. The adsorbent was suitable for repeated use (over 4 cycles) without any noticeable loss of capacity.  相似文献   

9.
A revegetation trial was conducted to evaluate the feasibility of growing a legume species, Prosopis juliflora L., on fly ash ameliorated with combination of various organic amendments, blue-green algal biofertilizer and Rhizobium inoculation. Significant enhancements in plant biomass, photosynthetic pigments, protein content and in vivo nitrate reductase activity were found in the plants grown on ameliorated fly ash in comparison to the plants growing in unamended fly ash or garden soil. Higher growth was obtained in fly ash amended with blue-green algae (BGA) than farmyard manure or press mud (PM), a waste from sugar-processing industry, due to the greater contribution of plant nutrients, supply of fixed nitrogen and increased availability of phosphorus. Nodulation was suppressed in different amendments of fly ash with soil in a concentration-duration-dependent manner, but not with other amendments. Plants accumulated higher amounts of Fe, Mn, Cu, Zn and Cr in various fly ash amendments than in garden soil. Further, inoculation of the plant with a fly ash tolerant Rhizobium strain conferred tolerance for the plant to grow under fly ash stress conditions with more translocation of metals to the above ground parts. The results showed the potential of P. juliflora to grow in plantations on fly ash landfills and to reduce the metal contents of fly ash by bioaccumulation in its tissues.  相似文献   

10.
The Kadji-Sai abandoned field of U-bearing brown coal on the southern coast of Lake Issyk-Kul (Kyrgyzstan) poses a threat of radioactive pollution to the world's fifth deepest and second largest pristine highland lake. The valleys of ephemeral streams in the lake catchment are filled with coarse-grained sand and clay, with a background U--Ra activity of 35--55 Bqkg(-1). High activity areas vs. this background come from three sources: (1) scarce outcrops of uraniferous brown coal and mining wastes containing fragments of this coal with (238)U/(226)Ra ratios of 0.8 due to uranium losses through weathering; (2) manmade anomalies caused by a radioactive waste dump, where U was extracted from the ash of coal burnt at a coal-fired power plant. As a result, the (238)U/(226)Ra ratios become 0.15--0.25; (3) six catch pools terraced below the mine, where U activity decreases downslope, and (238)U/(226)Ra ratios reach 150--200. Uranium lost in the extraction process may have been retained on the terraces. The distribution pattern of radionuclides in the bottom sediments of the lake is controlled by water depth and offshore distance. The upper section of homogeneous limy--argillic deposits in the lake center remains undisturbed by currents, as indicated by regular sub-exponential distribution of atmospheric (137)Cs and (210)Pb(atm). Sedimentation rate in the lake center for the past century, found from (210)Pb, was 0.32 mmyr(-1). (238)U/(226)Ra in deep-water sediments was about 3. The activity of uranium adsorbed by sediments from the lake water was estimated by subtraction of the Ra-equilibrium component from the total U activity. Thus, the flux of dissolved U to the bottom sediments was as 2.07 x 10(-7)gcm(-2)yr(-1). The upper section of near-shore deposits was disturbed by currents, with (137)Cs and (210)Pb(atm) more or less uniformly distributed in this layer. Peaks of (226)Ra and (210)Pb occur at different depths from 5 to 20 cm below the sediment surface, with (238)U/(226)Ra ratios 0.28--0.44. The presence of mullite in these sediments indicated that radioactive ash penetrated into the lake in the past. At present, (226)Ra in the ash is buried under a non-radioactive cap.  相似文献   

11.
Saline waters from underground coal mines in Poland often contain natural radioactive isotopes, mainly 226Ra from the uranium decay series and 228Ra from the thorium series. Approximately 40% of the total amount of radium remains underground as radioactive deposits, but 225 MBq of 226Ra and 400 MBq of 228Ra are released daily into the rivers along with the other mine effluents from all Polish coal mines. Technical measures such as inducing the precipitation of radium in gobs, decreasing the amount of meteoric inflow water into underground workings, etc. have been undertaken in several coal mines, and as a result of these measures, the total amount of radium released to the surface waters has diminished by about 60% during the last 5-6 years. Mine water can have a severe impact on the natural environment, mainly due to its salinity. However, associated high levels of radium concentration in river waters, bottom sediments and vegetation have also been observed. Sometimes radium concentrations in rivers exceed 0.7 kBq/m3, which is the permitted level for waste waters under Polish law. The extensive investigations described here were carried out for all coal mines and on this basis the total radium balance in the effluents has been calculated. Measurements in the vicinity of mine settling ponds and in rivers have given us an opportunity to study radium behaviour in river waters and to assess the degree of contamination. Solid waste materials with enhanced natural radioactivity have been produced in huge amounts in the power and coal industries in Poland. As a result of the combustion of coal in power plants, low-radioactive waste materials are produced, with 226Ra concentration seldom exceeding a few hundreds of Bq/kg. A different situation is observed in coal mines, where, as a result of precipitation of radium from radium-bearing waters, highly radioactive deposits are formed. Sometimes the radioactivity of such materials is extremely high; precipitates from coal mines may have radium concentrations of 400,000 Bq/kg--equivalent to 3% uranium ore. Usually, such deposition takes place underground, but sometimes co-precipitation of radium with barium takes place on the surface, in settling ponds and in rivers. Therefore management of solid waste with technologically enhanced natural radioactivity (TENR) is a very important subject.  相似文献   

12.
Microbiological reduction of uranyl by sulfate reducing bacteria (SRB) has been proposed as a promising method for removal of radionuclide from groundwater. In this study, we examined the effect of two naturally occurring Fe(III) (hydr)oxides, hematite and goethite, on the bioreduction of U(VI) by a mixed culture of SRB via laboratory batch experiments. The biogenic precipitate from U(VI) bioreduction was determined using X-ray absorption near edge structure (XANES) analysis, showing a typical feature of uraninite (UO2). In the presence of either hematite or goethite-containing Fe(III) ranging from 10 to 30 mM, the reduction of U(VI) was retarded by both minerals and the retardatory effect was enhanced with increasing amount of Fe(III) (hydr)oxide. When exposed to a mixture of hematite and goethite with the total Fe(III) kept constant at 20 mM, the retardatory effect on U(VI) reduction by the minerals were directly correlated with the fraction of hematite present. A slow increase in U(VI) concentration was also found in all Fe(III) (hydr)oxide treatments after 10-13 days, accompanied by the release of Fe(II) into the solution. The presence of Fe(III) (hydr)oxide can cause the eventual incomplete bioreduction of U(VI). However, it was not the case for the control without minerals. When mixing biogenic uraninite with hematite or goethite without SRB, Fe(II) was also detected in the solution. These findings suggest that the U(VI) remobilization after 10~13 days may be due to reoxidation of the uraninite by the solid-phase Fe(III) (hydr)oxide.  相似文献   

13.
In order to study the pollution of fluvial ecosystems, it is necessary to analyze not only the levels of chemical contaminants in water, but also those accumulated in the sediment matrix, as well as to assess its ecotoxicological status. Eleven Catalan (Spain) river sections (one sampling point per river) located near urban and industrial areas were sampled during winter of 2009. Water pollutants were collected by using passive samplers as Diffusive Gradient in Thin-Films (DGTs) and Semi-Permeable Membrane Devices (SPMDs). Point water samples were also collected. The concentrations of potentially toxic elements (PTE) in water, filtered water, DGTs and sediment samples were analyzed. Aqueous and organic solvent extracts of sediments samples and organic extracts of SPMDs were performed to assess acute toxicity to Vibrio fischeri by Microtox(?), and chronic toxicity to the green alga Pseudokirschneriella subcapitata. Microtox(?) test was also performed with DGT extracts. The results show that metals content of Catalan river waters are below the freshwater screening US EPA benchmarks, excepting some industrial areas (for Hg, Pb, and Zn). In contrast, sediments levels of some rivers were far above freshwater sediment screening US EPA benchmarks (for Zn, As, Cr, Pb, Ni, Hg, and Mn), particularly in the most industrialized areas. A good correlation was found between toxicity values of extracts (from sediments and DGTs) and PTE levels in sediments. The current results support the suitability of using combined point and passive sampling methods for assessing the chemical and ecotoxicological status of aqueous environments.  相似文献   

14.
2003年1月~2004年12月对三峡湖北库区江段5个采样点及其一级支流——香溪河流域6个采样点的浮游藻类进行了为期2周年的调查,共采集和鉴定浮游藻类定性和定量水样1 000余个,获得有效数据2 000多个。数据显示,蓄水前(2003年1月~2003年6月)、蓄水1周年(2003年6月~2004年5月)和蓄水1.5年(2004年6月~2004年12月)3个时间段之间,被调查水域的浮游藻类群落结构、细胞密度和水质状况均存在一定的差异。总体而言,藻类的群落结构干流江段以硅藻为主,绿藻次之;支流水域以绿藻占据首位,硅藻次之。被调查水域藻类的细胞密度随蓄水时间的延长呈增长趋势,并显示一定的季节性差异;藻类细胞密度与TP的相关性比与TN的相关性更为密切。目前干流江段和支流水域的水质状况分别为中营养型和中-富营养型,较建坝蓄水前的水质有所下降。在分析导致藻类种群结构和细胞密度变化原因的基础上,建议加强对库区水质的检测和保护,以杜绝和防止库区的水域环境进一步恶化。  相似文献   

15.
人工湿地小试系统藻类去除效果的变化研究   总被引:12,自引:1,他引:12  
夏季在水力负荷为800mm/d间歇式进水条件下,研究了人工湿地不同工艺流程的8套小试系统SSP(system of small plot)内部水流方向上藻类去除率的变化。结果表明:人工湿地小试系统中,藻类生物量沿水流方向逐渐减少,除藻率在出水处均达到最大值。藻类的去除主要发生在湿地水流方向的前几层,而系统其他层对藻类只有微弱的去除效果。由下行池与上行池构成的湿地系统中,去藻是上、下行池共同作用的结果。在有推流床或塘处理系统参与的湿地系统中,它们对藻类的去除均有一定的作用。去藻作用主要是基质的拦截,不同的水流方向、植物和微生物也起到了一定作用。湿地对藻类的去除率在夏季一般都能达到90%以上,证明人工湿地是一种有效的除藻生态-生物方法,对除藻要求比较高水体的湿地构建及工艺流程的设计、组合具有重要意义。  相似文献   

16.
The biological treatment of groundwater is used primarily to remove electron donors from water sources, providing (biologically) stable drinking water, which preclude bacterial regrowth during subsequent water distribution. To the electron donors belong also the dissolved metal cations of ferrous iron and manganese, which are common contaminants found in most (anaerobic) groundwater. The removal of iron and manganese is usually accomplished by the application of chemical oxidation and filtration. However, biological oxidation has recently gained increased importance and application due to the existence of certain advantages, over the conventional physicochemical treatment. The oxidation of iron and manganese is accelerated by the presence of certain indigenous bacteria, the so-called "iron and manganese oxidizing bacteria." In the present paper, selected long-term experimental results will be presented, regarding the bioremediation of natural groundwater, containing elevated concentrations of iron and arsenic. Arsenic is considered as a primary pollutant in drinking water due to its high toxicity. Therefore, its efficient removal from natural waters intended for drinking water is considered of great importance. The application of biological processes for the oxidation and removal of dissolved iron was found to be an efficient treatment technique for the simultaneous removal of arsenic, from initial concentrations between 60 and 80 microg/l to residual (effluent) arsenic concentrations lower than the limit of 10 microg/l. The paper was focused on the removal of As(III) as the most common species in anaerobic groundwater and generally is removed less efficiently than the oxidized form of As(V). To obtain information for the mechanism of As(III) removal, X-ray photoelectron spectroscopy (XPS) analyses were applied and it was found that As(III) was partially oxidized to As(V), which enabled the high arsenic removal efficiency over a treatment period of 10 months.  相似文献   

17.
This work discusses trace elements studied beneath the semiarid endorheic region of the Famatina Range (La Rioja, NW Argentina). The results obtained in 27 control sites allow the determination of five distinct geochemical patterns in the Famatina Range. Pattern 1 reflects the composition of underlying Paleozoic and Tertiary bedrock (background level: water pH, 7.5–9; specific conductance, 0.2–0.7 mS cm−1), which is influenced by mineralization. Pattern 2 exhibits water pH, 6; specific conductance, 0.7 mS cm−1; high contents of Cu, Cd, Rb, Zn, Sn, and Be in waters; and high contents of Cu, Cd, Zn, Pb, Cr, Sb, Ag, Be, Co, Ni, Bi, Rare Earth Elements (REE), Li, Ba, Cs, and Sr in sediments. Pattern 3 exhibits water pH, 3–4; specific conductance, 1.0 mS cm−1; high contents of Pb, Co, Be, Au, As, Cr, Hg, Th, Ba, Cs, Rb, Sb, Y, Zr, REE, and Hf in waters; high contents of Cd, Zn, Mo, and As in sediments). Pattern 3 is also modified by the input of elements from a source external to the Famatina Range. Pattern 4 exhibits water pH, 7–8; specific conductance, 1.5–2.3 mS cm−1; high contents of B, Li, Ba, Sr, and Zn in waters; high contents of Li, Cr, Sr, Ni, and Cs in sediments. Finally, Pattern 5 is developed on the red sandstones from De la Cuesta Formation (water pH, 8; specific conductance, 2.5–5.0 mS cm−1; high contents of Sr, Mo, U, B, Li, Rb, and Hf in waters; high contents of B, Ba, Cs, Li, and Rb in sediments). The mobility of above-mentioned elements is mainly related to water pH changes and evaporation processes.  相似文献   

18.
The Gulf of Saros in the northeastern Aegean Sea (Turkey) is a relatively unpolluted marine environment. There is almost no industry and only small settlements in the surrounding region. The main sources of fresh water and sediment to the Gulf are the Meric River in the northwest and the Kavak Creek in the east. It has an asymmetric bathymetry with a 10-km-wide shelf to the north and up to 15-km-wide, 700-m-deep trough in the south. Water circulation in the Gulf is characterized by longshore currents and anticyclonic eddies. The Black Sea waters, leaving the Sea of Marmara through the Canakkale Strait, are known to enter the southern Gulf during the summer. The surface sediments on the northern shelf consist mainly of sand, whereas those on the slope and the deep trough are mainly silt and clay. The ranges of Fe, Mn, Cu, Zn, Pb, Ni, and Hg contents of the surface sediments from the Gulf of Saros are 0.25 4.60%, 114 1740 ppm, 6-44 ppm, 23-154 ppm, 2-80 ppm, 14-145 ppm, and 10-130 ppb, respectively. These values are low compared to those from the other neighboring marine environments, indicating the pristine nature of the Gulf in terms of metal pollution. However, most metal and organic carbon (Corg) distributions in the Gulf sediments show the effect of anthropogenic and natural inputs to the northwestern and eastern shelf areas from the Meric River and the Kavak Creek and to the deep trough from the Black Sea waters.  相似文献   

19.
Izmit Bay is one of the most polluted and populated enclosed sea in Turkey. It has been the centre of industrial activities for the last 30 years. Seven major sources enter the bay waters along the north coastline of the bay. This investigation forms part of continuing ecotoxicology studies in the Izmit Bay designed to constrain and minimise the pollution caused by flourishing industry and a growing population. Sediments sampled from the mouths of the major discharges of Izmit Bay were analysed for their organic carbon, total polycyclic aromatic hydrocarbon (t-PAH) and trace inorganic element (Cd, Al, As, Pb, Hg and Cu) contents and compared with those found in the sediments from the reference station in the outer bay (in the Marmara Sea). The toxicity of sediments was determined in the bulk and elutriate samples by using algal (Phaeodactylum tricornutum) batch bioassays. Chemical data showed that the sediments collected from the inner sites of the bay have been contaminated with Cd, Hg, As and PAHs. Organic carbon contents were also found higher. All the major industrial discharges into the bay are now biologically treated but bioassays performed with bulk sediments revealed that the recent sediments are toxic to the microalgae throughout the bay. The results are consistent with the previous toxicity studies performed with the industrial discharges.  相似文献   

20.
Triclosan (TCS) is an antimicrobial agent widely used in many personal care products. This study investigated the occurrence of TCS in effluents, biosolids and surface waters, and its fate in wastewater treatment plants (WWTPs). The aqueous concentrations of TCS in nineteen effluents from Australian WWTPs ranged from 23 ng/L to 434 ng/L with a median concentration of 108 ng/L, while its concentrations in nineteen biosolids ranged from 0.09 mg/kg to 16.79 mg/kg on dry weight basis with a median concentration of 2.32 mg/kg. The removal rates for TCS in five selected WWTPs were found to range between 72% and 93%. Biological degradation was believed to be the predominant removal mechanism for TCS in the WWTPs. However, adsorption onto sludge also played a significant role in the removal of TCS in the WWTPs. TCS at concentrations up to 75 ng/L was detected in surface waters (outfall, upstream, and downstream) from five rivers receiving effluent discharge from WWTPs. Preliminary risk assessment based on the worst-case scenario showed that the TCS concentrations in surface waters might lead to risks to aquatic organisms such as algae. Based on the TCS levels in the biosolids, application of biosolids on agricultural land may also cause adverse effects in the soil environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号