首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超高交联吸附树脂对有机物质甲苯的吸附热力学研究   总被引:2,自引:0,他引:2  
比较了2种超高交联聚苯乙烯吸附树脂NDa99与ZH-04对甲苯的静态吸附行为.结果表明,在288~293 K和研究的浓度范围内,ZH-04、NDa99对甲苯的吸附平衡数据符合Freundlich和Langmuir吸附等温方程.吸附为放热过程,适当降低温度有利于吸附,并计算了甲苯在ZH-04和NDa99树脂上的吸附焓变、自由能变和熵变,对吸附行为进行了合理的解释,为废水处理提供一定的理论依据.  相似文献   

2.
比较了2种超高交联聚苯乙烯吸附树脂NDa99与ZH-04对甲苯的静态吸附行为.结果表明,在288~293 K和研究的浓度范围内,ZH-04、NDa99对甲苯的吸附平衡数据符合Freundlich和Langmuir吸附等温方程.吸附为放热过程,适当降低温度有利于吸附,并计算了甲苯在ZH-04和NDa99树脂上的吸附焓变、自由能变和熵变,对吸附行为进行了合理的解释,为废水处理提供一定的理论依据.  相似文献   

3.
研究了5种吸附树脂(NDA-88、NDA-99、NDA-150、AM-1和XAD-4)对间硝基酚的静态吸附行为.结果表明,3种超高交联树脂(NDA-88、NDA-99和NDA-150)对间硝基酚的吸附效果都比较好.并研究了NDA-88树脂对间硝基酚的饱和吸附和脱附行为.结果显示,NDA-88树脂对间硝基酚的饱和吸附量为3.5 mmol/g,该树脂吸附间硝基酚后容易洗脱,用乙醇:2 mol/LNaOH(体积比1:1)作脱附剂,温度328 K,脱附剂用量为3 BV(床体积)时,脱附率约96%.用NDA-88树脂处理含硝基酚废水,废水的处理量为40 BV时,COD平均去除率约91%,树脂吸附性能良好.  相似文献   

4.
以聚丙烯腈 (PAN)大孔树脂为载体 ,将活性组分聚乙烯亚胺 (PEI)通过化学涂敷手段交联在其表面 ,制备出一种新型交联螯合树脂。本文考察了此树脂对溶液中锌离子的吸附性能 ,开展了饱和吸附容量、等温吸附曲线、pH影响曲线以及吸附速度曲线等实验。结果表明 ,此交联螯合树脂具有对锌离子吸附能力强、吸附速度快等特点 ,可望用于含锌废水的处理及回收。  相似文献   

5.
通过树脂筛选实验,选用大孔强酸性阳离子树脂D006作为Cd(Ⅱ)的吸附材料,通过静态实验考察吸附时间、振荡转速、溶液pH和树脂用量对吸附效果的影响,并探讨了吸附的热力学和动力学性能,同时对树脂进行了再生实验。结果表明,D006树脂对Cd(Ⅱ)的平衡吸附量可达20.98mg/g;D006树脂吸附Cd(Ⅱ)的最佳条件为吸附时间120min、振荡转速120r/min、溶液pH 2.9左右、树脂用量0.20g;D006树脂对Cd(Ⅱ)的吸附过程符合Langmuir方程,为单分子层吸附;准二级动力学模型能较好地描述Cd(Ⅱ)在D006树脂上的吸附行为,吸附的活化能为5.46kJ/mol,该吸附过程主要为物理吸附;于30℃下采用1mol/L硫酸对吸附后的D006树脂进行脱附,脱附率可达到96%以上,可实现对Cd(Ⅱ)的富集与回收。  相似文献   

6.
将D301树脂与FeCl3-NaOH体系反应进行改性,制备一种改性树脂作为吸附剂,吸附去除废水中的β-萘磺酸的研究。通过SEM技术对改性树脂进行了结构表征;考察了pH值、吸附时间和温度因素对改性树脂吸附β-萘磺酸的影响:最佳的实验条件pH值为3、反应时间为7 h、温度为298 K,且最大吸附量达778 mg/g。改性树脂对β-萘磺酸的吸附等温线符合Freundlich方程;热力学实验数据:ΔG<0,ΔH<0,该吸附过程为放热、自发过程;吸附动力学符合二级动力学方程。  相似文献   

7.
考察了水中苦味酸在弱碱性离子交换树脂D301R上的吸附与解吸。研究了吸附热力学、动力学特性及吸附机理。结果表明,树脂在pH=2.7~10.2时,吸附能力最好。等温平衡吸附遵循Freundlich模型。吸附过程为吸热、熵增的自发过程。吸附动力学符合Lagergren准二级速率方程,颗粒内扩散为吸附速率的主要控制步骤,吸附速率常数为7.23×10-5~1.20×10-4g/(mg.min),吸附活化能为19.4 kJ/mol。树脂上吸附的苦味酸可用HNO3+丙酮混合液定量洗脱,洗脱率达99%。静态吸附和脱附的比较结果证实了吸附过程中存在不可逆化学吸附。树脂对苦味酸的吸附主要是通过静电吸附、酸碱络合吸附、氢键吸附等协同作用来完成的。  相似文献   

8.
苯酚和间甲酚的竞争吸附研究   总被引:2,自引:0,他引:2  
研究了水中苯酚和间甲酚在大孔树脂上的吸附,结果表明,IAS及LCA模型都能较好地反映这一吸附系统的竞争吸附规律。  相似文献   

9.
复合功能超高交联树脂吸附邻苯二酚的热力学研究   总被引:2,自引:0,他引:2  
研究了胺基修饰的复合功能超高交联树脂对水溶液中邻苯二酚的静态吸附热力学特征。结果表明,在超高交联树脂上引入适量的胺基,可明显提高树脂的吸附容量。该类树脂对邻苯二酚的吸附为自发的放热过程,属于物理吸附过程。  相似文献   

10.
实验采用离子交换树脂法吸附镍(Ⅱ),树脂选型确定了强酸性阳离子交换树脂001×14.5对镍(Ⅱ)吸附容量最大.用所选的001×14.5树脂吸附镍(Ⅱ)的过程,静态吸附实验表明,转速大于100 r/min时,对树脂吸附的影响可忽略,即基本消除外扩散,pH =7.0时吸附最佳,镍(Ⅱ)吸附率随树脂用量的增加而增大;001×14.5树脂吸附镍(Ⅱ)过程符合Langmuir等温吸附方程,且为优惠吸附;吸附过程符合拟二级动力学模型,吸附过程活化能为E=30.9 kJ/mol,由颗粒内扩散控制;用1 mol/L的硫酸对吸附饱和树脂进行脱附再生,脱附率可达98%以上.  相似文献   

11.
新型TCAS吸附树脂对水中Cd~(2+)的吸附去除研究   总被引:2,自引:1,他引:2  
通过静态吸附试验,研究一种由超分子受体化合物磺化硫杂杯芳烃(TCAS)与树脂结合的产物--新型TCAS吸附树脂对重金属Cd2+的吸附去除性能,并初步探讨了吸附机理.试验研究结果表明,TCAS吸附树脂对Cd2+的饱和吸附量为14.45 mg/g.当温度为20℃,0.5 g TCAS吸附树脂对10 mL浓度为5 mg/L的Cd2+溶液吸附60 min时,Cd2+的去除率可达到99%以上.pH值是影响TCAS吸附树脂吸附效果的重要因素,在pH=5~9时,Cd2+的去除率随着pH值的升高而增大.在试验范围内,TCAS吸附树脂对Cd2+吸附符合Freundlich方程.吸附在TCAS吸附树脂上的Cd2+可洗脱回收,TCAS吸附树脂也可再生利用.TCAS吸附树脂对重金属Cd2+的吸附机理主要归因于TCAS对Cd2+的络合作用.  相似文献   

12.
离子交换树脂对氰化溶液中Fe(Ⅱ)和Fe(Ⅲ)的吸附行为   总被引:1,自引:0,他引:1  
研究了大孔型弱碱性阴离子交换树脂L-300对于氰化溶液中Fe(CN)64-和Fe(CN)63-的吸附过程。结果表明,L-300树脂可有效地吸附Fe(Ⅱ)和Fe(Ⅲ)的氰化络合离子。25℃时,该树脂(湿树脂)对Fe(Ⅱ)和Fe(Ⅲ)的静态饱和吸附容量分别为5.301 mg/mL和8.585 mg/mL。该树脂对铁氰络合离子的吸附过程符合Lagergren二级速度方程式,以液膜扩散为主控步骤,对Fe(Ⅱ)和Fe(Ⅲ)的吸附速率常数分别为39.85 mL/(g·min)和55.56 mL/(g·min),表明对Fe(Ⅲ)的吸附速率要稍大于对Fe(Ⅱ)的吸附速率。L-300树脂对Fe(Ⅱ)和Fe(Ⅲ)的吸附符合Freundlich经验等温式,吸附过程的焓变分别为11.65 kJ/mol和11.81 kJ/mol,表明吸附是吸热过程。  相似文献   

13.
摘要利用原位沉淀法将水合氧化铁(HFO)负载于氨基膦酸树脂D418上,制备一种对污水中磷具有良好吸附性能的复合吸附剂(HFO-D418),研究了pH、共存离子对HFO-D418去除水中磷的影响,结合红外光谱对HFO-D418吸附磷的机制进行探讨。结果表明,D418与HFO-D418对磷的吸附均在pH为7.0时达到最佳,最大吸附量分别为9.21、36.12mg/g。共存离子的存在将降低两种吸附剂对磷的吸附量,相比而言,HFO-D418受共存离子的影响较D418小,4种共存离子中,CO_3~(2-)对吸附的影响最大,NO_3~-的影响最小。HFO-D418再生性能优异,以4%(质量分数,下同)NaOH+4%NaCl为解吸剂,经5次再生循环后HFO-D418解吸率仍为80%左右。D418与HFO-D418对磷的吸附过程符合准一级动力学方程,D418离子交换作用及HFO与磷的络合反应、静电吸引是HFO-D418吸附磷的主要作用机制。  相似文献   

14.
ZH-02树脂对水中腐殖酸的吸附去除研究   总被引:1,自引:0,他引:1  
通过几种吸附树脂ZH 0 0、ZH 0 1、ZH 0 2、ZH 0 3、颗粒活性炭 (GAC)和AmberliteXAD 4对腐殖酸的静态吸附试验的筛选结果 ,发现大孔树脂ZH 0 2对腐殖酸具有较好的吸附效果。利用颗粒活性炭作为参照 ,探讨了ZH 0 2的动态吸附去除效果和脱附再生条件 ,发现常温下醇碱溶液效果较好。  相似文献   

15.
通过静态吸附试验,研究一种由超分子受体化合物磺化硫杂杯芳烃(TCAS)与树脂结合的产物——新型TCAS吸附树脂对重金属Cd^2+的吸附去除性能,并初步探讨了吸附机理。试验研究结果表明,TCAS吸附树脂对Cd^2+的饱和吸附量为14.45mg/g。当温度为20℃,0.5gTCAS吸附树脂对10mL浓度为5113g/L的Cd^2+溶液吸附60min时,Cd^2+的去除率可达到99%以上。pH值是影响TCAS吸附树脂吸附效果的重要因素,在pH=5—9时,Cd^2+的去除率随着pH值的升高而增大。在试验范围内,TCAS吸附树脂对Cd^2+吸附符合Freundlich方程。吸附在TCAS吸附树脂上的Cd^2+可洗脱回收,TCAS吸附树脂也可再生利用。TCAS吸附树脂对重金属Cd^2+的吸附机理主要归因于TCAS对Cd^2+的络合作用。  相似文献   

16.
采用零价铁对2,4,6-三硝基甲苯(TNT)红水进行预处理,可将硝基物还原为对应苯胺类化合物,从而降低其毒性,提高可生化性,并使其带电荷,易于后续资源化利用。为了使还原后的TNT红水中的苯胺类物质与无机盐进行分离,研究了大孔吸附树脂HYA-106对还原后TNT红水中苯胺类物质的吸附行为。条件优化实验表明,在温度为293 K,pH为3.0,树脂用量为140 g·L-1时,COD和苯胺类去除率分别为91.4%和94.7%。吸附等温线表明,吸附量与温度呈负相关,吸附更符合Freundlich吸附模型,不同温度下相关系数均大于0.97。热力学研究表明,该吸附过程是焓推动的自发过程,范德华力、疏水效应、偶极力和氢键是主要的吸附作用力。动力学实验表明该吸附符合准二级动力学速率方程,吸附在150 min基本达到平衡,内扩散为控速步骤。  相似文献   

17.
新型树脂对氯酚类物质的吸附研究   总被引:4,自引:0,他引:4  
合成了乙酰氯修饰树脂NDA-O,与Purolite公司的MN-200相比,合成的树脂比表面积较小,但酸性官能团较多.用两种树脂吸附2-氯酚、4-氯酚和2,4-二氯酚发现,吸附结果可以用Langmuir和Freundlich等温吸附方程很好地模拟,合成的NDA-O对3种氯酚类物质的吸附能力优于MN-200.两种树脂对氯酚类物质的吸附量随着温度的升高而减少,表明吸附是放热过程,同时对氯酚类物质的吸附焓变随着吸附量的增大而减小.对同一种树脂来说,吸附量随着氯代程度的增加而增加,取代氯数相同的时候,吸附量与吸附质的K..成正相关.进一步研究了pH对吸附的影响,在pH大于9时,3种氯酚类物质的吸附量均急剧减少.  相似文献   

18.
以前期工作中合成的树脂PAANa-TE为吸附剂进行重金属吸附测试,考察吸附剂用量、丙烯酸中和度、吸附时间、溶液pH、初始浓度和吸附温度对树脂吸附重金属离子Cu2+、Pb2+、Cr3+和Co2+性能的影响,用原子吸收分光光度计测定了树脂吸附Cu2+、Pb2+、Cr3+和Co2+后的残留浓度,树脂对4种金属离子的吸附容量分别为21.59、2.39、5.66和4.98 mmol/g,吸附容量大小为Cu2+Cr3+Co2+Pb2+,吸附速率顺序为Cr3+Pb2+Cu2+Co2+。结果表明,该树脂对高浓度重金属离子有较快速,高效率的吸附,吸附过程在100 min左右吸附容量达到最大,并用不同浓度的酸对吸附重金属离子的树脂进行脱附处理,脱附量很小,据此可考虑进一步对金属离子进行回收处理。且脱附率较低,因此,可对工业化和城市化进程所产生的各种化学形态的重金属水体污染物造成的生态环境和质量问题起到重要的改善作用。  相似文献   

19.
合成了一种用来吸附和去除水溶液中酚类化合物的2-羧基苯甲酰基修饰的超高交联吸附树脂(ZH-01),并从动力学和吸附容量角度比较了XAD-4、AM-1和ZH-01分别吸附浓度为800mg/L苯酚的情况。实验结果表明,ZH-01吸附剂有利于吸附苯酚、对甲苯酚和对硝基苯酚之类的酚类化合物。动力学和热力学研究都得到了相同的结果:ZH-01对苯酚和对甲苯酚吸附是化学吸附的过渡状态,而对对硝基苯酚的吸附是一种物理吸附过程,并且显示了ZH-01表面均孔特性。苯酚在ZH-01上的小柱吸附研究表明了吸附穿透容量和总吸附量分别为2.38mmol/g和3.05mmol/g,溶剂甲醇对吸附在ZH-01上苯酚的脱附效果较好。  相似文献   

20.
H103大孔树脂吸附苯酚性能研究   总被引:2,自引:0,他引:2  
许敏  张林生 《环境工程学报》2011,5(8):1811-1814
通过静态吸附实验,研究了不同条件下H103大孔树脂对水中苯酚的吸附性能。结果表明,树脂对水中苯酚的吸附速率较快,60 min内基本达到平衡。树脂对水中苯酚的吸附量随其初始浓度的增加而增加,并呈线性关系。吸附数据采用Freundlich吸附等温线模型拟合结果较好。动态处理某精细化工含酚废水结果表明,室温下固定床流速为3 ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号