首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用生物膜流化床工艺对中部某城镇污水处理厂进行提标改造,在冬季水温低于14℃时进行中试研究。取好氧池1和2中的部分填料经小试实验对其中的硝化反应动力学分析,得出填料上相应生物膜硝化反应速率表达式。并通过物料衡算计算出两级生物膜流化床反应器硝化反应动力学模型,经过实际中试实验,测得实际值与计算值相关性较好,其相对误差在15%以下。应用模型在单个反应器为完全混合、整体为推流模式的多级生物膜流化床工艺,得出NH4+-N出水浓度计算表达式。  相似文献   

2.
曝气生物流化床处理高氨氮粪便污水   总被引:2,自引:0,他引:2  
应用好氧曝气生物流化床反应器处理动车集便器粪便污水,研究反应器同步硝化反硝化脱氮及去除COD效能,以及DO对处理效能的影响,通过镜检观察反应器内微生物特性,探究反应器同步硝化反硝化脱氮机理。结果表明,反应器维持DO在2.5 mg/L左右时,对粪便污水中氨氮、TN和COD的去除率分别达99.8%、84.1%和95.5%,在好氧曝气生物流化床反应器中,实现同步硝化反硝化脱氮并去除有机物。分析认为,反硝化脱氮主要发生在生物膜内的厌氧微环境,反硝化反应主要由厌氧反硝化菌完成,曝气生物流化床反应器同步硝化反硝化脱氮机理主要从微环境理论解释。  相似文献   

3.
以去除海水循环水养殖系统中硝酸盐(NO_3~--N)为目的,通过接种好氧反硝化细菌的方式构建海水好氧反硝化反应器,对其反硝化脱氮性能和动力学特征展开研究。研究结果显示,好氧反硝化反应器完成挂膜需要15 d。在有氧条件下,反应器对NO_3~--N浓度为30~150 mg·L-1海水具有良好的反硝化性能,NO_3~--N的去除率达到90%以上。批次实验结果显示:好氧反硝化过程呈现阶段性,NO_3~--N在整个过程中可被高效去除;NO_2~--N积累最大值随初始NO_3~--N浓度的增大而增大,且初始NO_3~--N浓度越高,NO_2~--N完全去除所需时间越长。采用Monod方程的微分方程模型,能够很好地拟合反硝化过程中NO_3~--N、NO_2~--N的变化趋势。该好氧反硝化反应器具有良好的脱氮性能,为解决循环水养殖系统NO_3~--N积累问题提供了新的思路。  相似文献   

4.
在移动床生物膜反应器(MBBR)实现稳定短程硝化的前提下,采用模拟废水进行批式实验,研究生物膜短程硝化过程的基质抑制动力学特性及pH的影响.基于Haldane模型建立短程硝化基质抑制动力学方程,确定不同pH条件下的动力学常数.结果表明,不同pH条件下,高浓度氨氮对短程硝化的抑制特性均符合Haldane模型.pH为7.0、8.0和9.0时的氨氮最大比降解速率(qmax)分别为9.906、16.234、14.742mg/(g·h),pH=8.0是获得高效的短程硝化效果的适宜运行条件.但半亚硝化的实现则需要在氨氮降解速率适当降低的条件下(pH=7.0)才能实现.  相似文献   

5.
溶解氧和有机碳源对同步硝化反硝化的影响   总被引:14,自引:5,他引:9  
利用SBR反应器,探讨了溶解氧(DO)和有机碳源(COD)对同步硝化好氧反硝化的影响.结果表明,DO范围在0.5~0.6 mg/L时最适合于同步硝化好氧反硝化脱氮.在同步硝化反硝化过程中出现了亚硝酸盐氮的积累,推断经由短程硝化反硝化途径.总氮的去除率随着COD/N(碳氮比)的增加而增加,当COD/N为10.05时,总氮去除率最高可达70.39%.继续增加碳氮比时,总氮去除率增加不多,并且还会导致硝化作用不完全.当存在足够的易降解有机碳源时,能发生完全的好氧反硝化作用.  相似文献   

6.
SFBR工艺顺序进行硝化和反硝化的动力学研究   总被引:3,自引:0,他引:3  
采用序半连续式反应器(sequencing fed-batch reactor,简称SFBR)对人工合成废水顺序地进行硝化和反硝化动力学进行了研究.硝化和反硝化所用微生物为活性污泥.反应器在不同的操作条件进行操作,获得了用于确定动力学常数的数据;获得动力学参数um=0.05 h-1,KNO=2.0 mg/L,y=0.47 mg X/mg N,a=0.001 h^-1.类似地确定了反硝化动力学参数kD=0.01 h^-1和KD,NO=0.4 mg/L.在一定范围内硝化和反硝化速率随着氨浓度和硝酸盐浓度的增加而增加.实验数据表明,硝化和反硝化的动力学符合Monod动力学方程.  相似文献   

7.
一体化生物膜反应器处理生活污水试验研究   总被引:4,自引:0,他引:4  
根据传统好氧硝化和缺氧反硝化生物脱氮的工艺原理,开发了一体化生物膜反应器,并对其进行了处理生活污水的试验研究。试验结果表明,在有机负荷提高的前提下,通过对进水方式和曝气速率的调节,反应器对COD和TN的去除率达到97%和82%;污泥活性测定表明,硝化反应和反硝化反应分别在反应器的好氧区和缺氧区占优势,但由于生物膜内部微环境的存在,反应器不同区域均有同时硝化和反硝化(SND)现象的发生。  相似文献   

8.
采用序半连续式反应器(sequencing fed-batch reactor,简称SFBR)对人工合成废水顺序地进行硝化和反硝化动力学进行了研究.硝化和反硝化所用微生物为活性污泥.反应器在不同的操作条件进行操作,获得了用于确定动力学常数的数据;获得动力学参数um=0.05 h-1,KNO=2.0 mg/L,y=0.47 mg X/mg N,a=0.001 h-1.类似地确定了反硝化动力学参数kD=0.01 h-1和KD,NO=0.4 mg/L.在一定范围内硝化和反硝化速率随着氨浓度和硝酸盐浓度的增加而增加.实验数据表明,硝化和反硝化的动力学符合Monod动力学方程.  相似文献   

9.
研究了投加硝态氮NO3^--N对缺氧反硝化-好氧和缺氧水解-好氧串联系统处理印染PVA退浆废水的效果。结果表明,缺氧反硝化投加硝态氮NO3^--N比缺氧水解-好氧对CODCr的去除率在缺氧池、好氧池中均提高了30%,缺氧反硝化-好氧工艺二沉池出水经生物碳处理后,CODCr,的去除率达90%。C:N:P的比例合适与否是处理印染PVA退浆废水成功的关键。  相似文献   

10.
在连续流生物膜反应器中通过控制DO、pH和HRT,对低氨氮浓度废水进行了亚硝化的实验研究。结果表明,在进水氨氮浓度为35~45 mg/L,温度为34℃的情况下,当DO=1.4~1.5 mg/L,pH=8.3,HRT=6 h时,氨氮的去除率与亚硝态氮的积累率均可达到80%左右,实现了较好的氨氮降解及稳定的亚硝态氮的积累。  相似文献   

11.
炼油催化剂生产过程中产生的高盐度、高无机质的高氨氮废水难以处理。研究将短程硝化反硝化生物脱氮技术应用于该种废水的处理。实验同时控制反应器温度(31℃)、溶解氧(≤1.5 mg/L)、pH值(7.8~8.7)和污泥龄(30 d),较快地实现催化剂废水短程硝化污泥的驯化,亚硝酸盐平均积累率达到了97.4%。在此基础上,结合在线监控ORP、pH值变化情况及短程硝化反应动力学研究,较好地实现了炼油催化剂废水的短程硝化。  相似文献   

12.
SBR用于焦化废水生物处理的试验研究   总被引:3,自引:0,他引:3  
采用SBR工艺对焦化废水的有机物降解和生物脱氮进行了研究。试验结果表明,焦化废水的生物脱氮是以短程硝化/反硝化的途径存在的,而且在好氧阶段存在同时硝化/反硝化(SND)过程。好氧阶段的反硝化效率约占整个反应周期脱氮效率的37.0%。SBR反应器对NH3N的去除效率在95.8%~99.2%,COD的去除率在85.3%~92.6%。由于出水中NO2N的积累,NO2N对COD浓度贡献值得关注。  相似文献   

13.
同步硝化反硝化工艺中DO浓度对N2O产生量的影响   总被引:1,自引:0,他引:1  
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响.控制溶解氧浓度恒定在1、2、2.5和3 mg/L.结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%.DO为2 mg/L时,...  相似文献   

14.
高浓度氨氮废水同步硝化反硝化性能研究   总被引:8,自引:0,他引:8  
利用序批式反应器研究了溶解氧浓度和进水碳氮比对高浓度氨氮废水脱氮性能的影响.结果表明,溶解氧浓度降低实现了短程同步硝化反硝化,并提高了反应器脱氮效率.反应器运行经历了外部碳源的摄取、PHB储存、PHB有氧氧化和同步硝化反硝化作用,PHB作为同步硝化反硝化过程中反硝化的电子供体.  相似文献   

15.
序批式生物膜反应器挂膜启动实现短程硝化   总被引:2,自引:0,他引:2  
常温条件下(20~25℃),以模拟的人工配水为研究对象,采用序批式生物膜反应器(SBBR),在初期挂膜的基础上,笔者运用两种不同的挂膜方式即重新加入新泥和不加新泥而加大进水COD浓度来实现生物膜的快速启动。实验表明,2种挂膜启动通过14 d的培养与富集,NH4+-N与COD的处理效果都能分别达到85%和75%以上。将剩余污泥排尽后,采用第1种挂膜方式的反应器通过连续间歇曝气,达到了比较好的短程硝化效果。调整溶解氧,并且通过先下降后上升曝气量的方式,能进一步提高亚氮的出水。最终在DO为3.6 mg/L时,亚氮的积累率能达到平均74%左右,达到了比较好的亚硝化效果。而第2种挂膜方式培养的生物膜则以好氧反硝化菌为主,去除的氨氮由同化作用和培养的好氧反硝化菌去除,以后者为主。通过比较可以看出,为了实现短程硝化,第1种挂膜方式比第2种更具有优越性,有利于硝化菌种的生长和亚氮的积累,而第2种方式则有利于培养好氧反硝化菌。  相似文献   

16.
SBR用于焦化废水生物处理的试验研究   总被引:2,自引:0,他引:2  
采用SBR工艺对焦化废水的有机物降解和生物脱氮进行了研究。试验结果表明,焦化废水的生物脱氮是以短程硝化/反硝化的途径存在的,而且在好氧阶段存在同时硝化/反硝化(SND)过程。好氧阶段的反硝化效率约占整个反应周期脱氮效率的37.0%。SBR反应器对NH3-N的去除效率在95.8%~99.2%,COD的去除率在85.3%~92.6%。由于出水中NO2-N的积累,NO2-N对COD浓度贡献值得关注。  相似文献   

17.
两阶段曝气生物滤池的硝化性能   总被引:2,自引:1,他引:1  
曝气生物滤池(BAF)是近年来受到广泛关注的一种新型污水处理技术,具有占地面积少、投资费用低、处理效率高、出水水质好等优点。现已被应用于许多污水处理厂的二级处理、深度处理以及污水的回用。实验以陶粒为填料,自行设计了升流式两阶段BAFs(UBAFs)处理模拟生活污水,考察了反应器运行条件对COD与氨氮去除影响,并探讨了UBAFs反应器内氮流失及同步硝化反硝化情况。结果表明,UBAFs对生活污水处理具有良好的净化效果。在进水COD和氨氮浓度分别为200~363 mg/L和16.8~31.3 mg/L条件下,UBAFs处理出水水质均达到《城市污水再生利用城市杂用水水质》(GB/T 18920-2002)标准,能够满足回用要求。通过采用氮平衡分析方法和借助电子扫描电镜技术,初步认为UBAFs反应器脱氮方式是由于在UBAFs第一阶段局部厌氧环境中以传统方式进行硝化反硝化脱氮,第二阶段是在好氧条件下,异养好氧硝化菌的同步硝化反硝化脱氮。  相似文献   

18.
在好氧条件下,对利用生物滴滤塔(bio-trickling filter,BTF)反硝化净化废气中NOx的过程进行了理论模型探讨,并用实验结果进行了验证。在分析NOx在BTF内传质以及生物降解过程的基础上,建立了NOx在气相和生物膜相的质量守恒方程,结合Fick定律和好氧条件下的Monod微生物反应动力学方程,最终得到了NOx在BTF中"吸附-微生物降解"过程的动力学方程。模型计算值与实验结果表明,BTF中好氧反硝化过程为一级反应过程,利用该模型可以较好地模拟进口浓度、停留时间等因素对出口浓度的影响,对实际应用具有指导意义。  相似文献   

19.
膜生物反应器同步硝化反硝化系统的研究   总被引:2,自引:2,他引:0  
设计结构合理的膜生物反应器,驯化培养硝化污泥,复配反硝化细菌,构建了具有同步硝化反硝化功能且能去除COD的膜生物反应器系统.MLVSS的增高和污泥结构的改善为同步硝化反硝化提供条件.进水氨氮浓度在50 mg/L,MLVSS为8 g/L时,最佳HRT为4~6 h,气量控制在0.5 m3/h左右,TN去除率达80%以上.系统承受负荷变化范围0~0.36 kg N/(m3·d),TN去除率均能保持80%左右,COD去除率稳定在90%.系统投加粉末活性炭的方法可以改善污泥结构,进而减轻膜污染.在试验阶段内,添加了PAC的活性污泥MLVSS的高低对膜通量的影响不大,膜通量基本保持稳定.  相似文献   

20.
一体化A/O生物膜反应器脱氮特性研究   总被引:1,自引:0,他引:1  
采用新型的一体化A/O生物膜反应器,对生活污水进行脱氮处理实验.研究了溶解氧(DO)质量浓度对硝化和反硝化作用的影响,并对反应器的脱氮特性和降解机理进行了探讨.结果表明:DO对一体化A/O反应器脱氮影响较大,随着好氧区DO的增加,NH3-N和TN的去除率相应增加.当DO为2~4 mg/L时,发生同步硝化反硝化作用,NH...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号