首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During incineration of municipal solid waste (MSW), various environmentally harmful elements and heavy metals are liberated either into bottom ash, or carried away with the off-gases and subsequently trapped in fly-ash. If these minor but harmful elements are not properly isolated and immobilized, it can lead to secondary environmental pollution to the air, soil and water. The stricter environmental regulations to be implemented in the near future in The Netherlands require a higher immobilization efficiency of the bottom ash treatment. In the present study, MSW incinerator bottom ash was vitrified at higher temperatures and the slag formed and metal recovered were examined. The behaviour of soluble elements that remain in the slag is evaluated by standard leaching test. The results obtained can provide a valuable route to treat the ashes from incinerators, and to make recycling and more efficient utilization of the bottom ash possible.  相似文献   

2.
This study investigated the physical properties, the chemical composition and the leaching behaviour of two bottom ash (BA) samples from two different refuse derived fuel high-temperature gasification plants, as a function of particle size. The X-ray diffraction patterns showed that the materials contained large amounts of glass. This aspect was also confirmed by the results of availability and ANC leaching tests. Chemical composition indicated that Fe, Mn, Cu and Cr were the most abundant metals, with a slight enrichment in the finest fractions.Suitability of samples for inert waste landfilling and reuse was evaluated through the leaching test EN 12457-2. In one sample the concentration of all metals was below the limit set by law, while limits were exceeded for Cu, Cr and Ni in the other sample, where the finest fraction showed to give the main contribution to leaching of Cu and Ni.Preliminary results of physical and geotechnical characterisation indicated the suitability of vitrified BA for reuse in the field of civil engineering. The possible application of a size separation pre-treatment in order to improve the chemical characteristics of the materials was also discussed.  相似文献   

3.
4.
Combined coal-biomass ash has an enormous impact on environmental quality near electric power plants. This paper describes an alternative to disposal in which the ash is used to produce cementitious materials. Ash was obtained from combustion of coal and biomass containing four mass ratios of anthracite, bitumen, rice husks, and eucalyptus bark. The cement-forming properties were systematically characterized including compressive strength development, durability, and expansion in water. The ash samples were ground to increase the specific surface area, and then used to partially replace ASTM Type I Portland cement in mixtures containing 15, 30, or 45 % ash by mass. The water-binder material's (Portland cement with or without combined coal-biomass ash) ratios (w/c) were held constant at 45, 55, or 65 % by mass. Types A, B, and D ash behaved similarly, while the properties of type C ash were slightly different. Increasing the ash fraction in Portland cement mixtures increased the water requirement and resulted in lower compressive strength. Thorough mechanical grinding reduced the porosity and significantly enhanced the material properties.  相似文献   

5.
Recycling MSWI bottom and fly ash as raw materials for Portland cement   总被引:5,自引:0,他引:5  
Municipal solid waste incineration (MSWI) ash is rich in heavy metals and salts. The disposal of MSWI ash without proper treatment may cause serious environmental problems. Recently, the local cement industry in Taiwan has played an important role in the management of solid wastes because it can utilize various kinds of wastes as either fuels or raw materials. The objective of this study is to assess the possibility of MSWI ash reuse as a raw material for cement production. The ash was first washed with water and acid to remove the chlorides, which could cause serious corrosion in the cement kiln. Various amounts of pre-washed ash were added to replace the clay component of the raw materials for cement production. The allowable limits of chloride in the fly ash and bottom ash were found to be 1.75% and 3.50% respectively. The results indicate that cement production can be a feasible alternative for MSWI ash management. It is also evident that the addition of either fly ash or bottom ash did not have any effect on the compressive strength of the clinker. Cement products conformed to the Chinese National Standard (CNS) of Type II Portland cement with one exception, the setting time of the clinker was much longer.  相似文献   

6.
Bottom ashes from two Danish municipal solid waste incineration plants were heated at 900 degrees C with iron oxide stabilized air pollution control residues at actual mass flow ratios (9:1), simulating a treating method for the residues. The two residues were co-treated, producing one combined stream that may be utilized as a secondary road construction material. Scanning electron microscope analysis and grain size distribution analysis indicated that sintering of the particles did not occur. Batch leaching tests at liquid/solid 10 l/kg at a range of pH-values (6-10) quantified with respect to Cd, Cr and Pb revealed significant positive effects of co-heating the ashes, although Pb showed slightly increased leaching. At a liquid/solid ratio of 10 l/kg the leachate concentrations were still low at pH 7-10 and the release of Pb was, thus, not expected to limit the utilization of the mixed ashes. The process, thus, fixates the metals in the solid residues without altering the leaching properties of the bottom ash too significantly.  相似文献   

7.
Incinerator bottom ash contains a large amount of silica and can hence be used as a silica source for the synthesis of mesoporous silica materials. In this study, the conditions for alkaline fusion to extract silica from incinerator bottom ash were investigated, and the resulting supernatant solution was used as the silica source for synthesizing mesoporous silica materials. The physical and chemical characteristics of the mesoporous silica materials were analyzed using BET, XRD, FTIR, SEM, and solid-state NMR. The results indicated that the BET surface area and pore size distribution of the synthesized silica materials were 992 m2/g and 2–3.8 nm, respectively. The XRD patterns showed that the synthesized materials exhibited a hexagonal pore structure with a smaller order. The NMR spectra of the synthesized materials exhibited three peaks, corresponding to Q2 [Si(OSi)2(OH)2], Q3 [Si(OSi)3(OH)], and Q4 [Si(OSi)4]. The FTIR spectra confirmed the existence of a surface hydroxyl group and the occurrence of symmetric Si–O stretching. Thus, mesoporous silica was successfully synthesized from incinerator bottom ash. Finally, the effectiveness of the synthesized silica in removing heavy metals (Pb2+, Cu2+, Cd2+, and Cr2+) from aqueous solutions was also determined. The results showed that the silica materials synthesized from incinerator bottom ash have potential for use as an adsorbent for the removal of heavy metals from aqueous solutions.  相似文献   

8.
Incineration has undergone several technology improvements, reducing air emissions and increasing the efficiency of energy and material recovery; however, there is still a long way to go. To analyze the environmental impacts of waste incineration, this study assessed 15 waste fractions that compose municipal waste in Spain, which are grouped as non-inert materials (plastics, paper, cardboard and organic matter), unburned materials (glass and Al) and ferrous materials. Additionally, this paper evaluates the valorization of bottom ash (BA) to produce steel, aluminum and cement in these recycled/recoverable waste fractions. The results depend on the input waste composition and the heating value (HHV) and showed that ferrous and unburned materials had the worst environmental performance due to the null HHV. The valorization of BA in steel, Al and cement production significantly reduced the environmental impact and the consumption of resources. BA recycling for secondary steel and Al production would improve the environmental performance of the combustion of unburned materials and ferrous materials, whereas the use of BA in cement production diminished the consumption of NR for non-inert materials. This is of great interest for organic matter and PC, waste with a low energy production and high heavy metal and sulfur content.  相似文献   

9.
The leaching behavior of dioxins from landfill containing bottom ash and fly ash from municipal solid waste incineration has been investigated by leaching tests with pure water, non-ionic surfactant solutions, ethanol solutions, or acetic acid solutions as elution solvents for a large-scale cylindrical column packed with ash. Larger amounts of dioxins were eluted from both bottom ash and fly ash with ethanol solution and acetic acid solution than with pure water. Large quantities of dioxins were leached from fly ash but not bottom ash by non-ionic surfactant solutions. The patterns of distribution of the dioxin congeners in the leachates were very similar to those in the bottom ash or fly ash from which they were derived.  相似文献   

10.
A comparison of waste and virgin polypropylene (PP) plastics under slow pyrolysis conditions is presented. Moreover, mixtures of waste PP with wastes of polyethylene (PE) and polystyrene (PS) were pyrolyzed under the same operating conditions. Not only the impact of waste on degradation products but also impacts of the variations in the mixing ratio were investigated. The thermogravimetric weight loss curves and their derivatives of virgin and waste PP showed differences due to the impurities which are dirt and food residues. The liquid yield distribution concerning the aliphatic, mono-aromatic and poly-aromatic compounds varies as the ratio of PP waste increases in the waste plastic mixtures. In addition to this, the alkene/alkane ratio of gas products shows variations depending on the mixing ratio of wastes.  相似文献   

11.
An attempt was made to recycle waste biomass and mineral powder (waste mica) as an alternative source of potassium (K) through composting technology. Two different waste biomass, isabgol straw and palmarosa distillation waste along with two levels of waste mica (2 and 4% as K) were used for preparation of enriched composts. A notable decrease of C:N ratio was observed at the end of the composting (150 days) as an indicator of compost maturity. The mature composts were evaluated for K-supplying capacity through laboratory leaching and soil incubation study. Significantly higher water-soluble K released initially followed by a sharp decrease up to 21 days of leaching thereafter gradually decreased up to 35 days of leaching. Water-soluble K was released from K-enriched (mica charged) compost significantly higher than the ordinary compost throughout the leaching period. Soil incubation study also revealed that application of K-enriched compost greatly improved the available K (water soluble and exchangeable) pools in K-deficient soil which indicated that a considerable amount of K releases during composting. Therefore, K-enriched compost could be an effective alternative of costly commercial K fertilizer and eco-friendly approach to utilize low-cost waste mineral powder and plant residue.  相似文献   

12.
In the combustion process of municipal solid waste (MSW), bottom ash (BA) represents the major portion of the solid residue. Since BA is composed of oxides, especially SiO(2) and CaO, the feasibility of its application in concrete as a substitute for cement was tested. It was found that at the age of 28 days, the flexural and compressive strengths of the binder linearly decrease at the rate of 0.03 and 0.02 MPa per wt% of BA in the binder, respectively. According to the results it may be recommended to replace up to 15 wt% of cement by BA and to use such binder where a low strength of concrete elements is required. Furthermore, the aggregate used for low strength concrete need not be of a very good quality. Therefore, gravel aggregate was partially replaced by recycled aggregate (RA). Consistency measured by slump was significantly reduced (>50%) when BA or/and RA were introduced into the mixture. However, concrete density and compressive strength were not affected and were approximately 2300 kg/m(3) and approximately 40 MPa, respectively.  相似文献   

13.
The waste input and the process technology of waste incineration plants appear to have a great influence on bottom ash quality. To better understand how these parameters can affect the characteristics of residues, bottom ash from six plants were tested and compared in this study. Bottom ash physico-chemical characteristics were investigated by chemical analyses, and leaching tests. In order to understand their long-term behavior, accelerated ageing experiments and biodegradation tests were also performed. The whole analyses gave complementary information. It was shown that the six samples do have different properties. Waste inputs have a great influence on Cl and S content in bottom ash, as well as on the Ca/Si ratio. The importance of this ratio on the carbonation process has been demonstrated. Combustion parameters have an influence on the quantity and mobility of the residual organic matter.  相似文献   

14.
废旧聚乙烯复合材料的制备与性能研究   总被引:1,自引:0,他引:1  
介绍了废旧聚乙烯复合材料的制备与性能。以废旧聚乙烯为原材料,通过与超细白炭黑进行纳米复合,制备高性能纳米复合材料;利用木粉、竹粉、稻糠等植物纤维与其进行木塑复合,制备环保型木塑复合材料;重点研究了多单体接枝共聚物在复合材料中的界面改性作用。  相似文献   

15.
Management of natural aggregate resources has become one of the most important challenges in construction, especially for high demand applications such as roads. Incinerator bottom ash (IBA), which is produced from burning domestic waste, has been considered a useful solution to the shortage of natural resources. In this research, IBA was mixed with limestone to produce an acceptable blend for use as a road foundation layer. Novel and traditional additives were adopted to improve the mechanical properties of IBA blends. The study focused on the treatment effect of additives on the mechanical characteristics of IBA blends under monotonic and cyclic triaxial stresses. The investigation evaluated fundamental material properties, including resilient modulus, initial Young's modulus and Poisson's ratio. Two nonlinear empirical models were adopted to depict the experimental resilient modulus results of the IBA blends. An approach has been proposed to predict realistic and representative values of resilient modulus for the material. In addition, a new relationship has been established between Young's modulus, resilient modulus and Poisson's ratio. Triaxial test results revealed that additives are more efficient with the control limestone blend than with the IBA blends. Novel additives, such as enzyme I and silica fume, produced a noticeable improvement in IBA properties in comparison to traditional additives.  相似文献   

16.
With the increase in the number of municipal solid waste incineration (MSWI) plants constructed in China recently, great attention has been paid to the heavy metal leaching toxicity of MSWI residues. In this study, the effects of various parameters, including extractant, leaching time, liquid-to-solid ratio, leachate pH, and heavy metal content, on the release properties of Cd, Cr, Cu, Ni, Pb, and Zn from MSWI bottom ash were investigated. Partial least-squares analysis was employed to highlight the interrelationships between the factors and response variables. Both experimental research and geochemical modeling using Visual MINTEQ software were conducted to study the pH-dependent leaching behavior of these metals in fresh and weathered bottom ash, considering precipitation/dissolution and surface complexation reactions (adsorption by hydrous ferric oxide and amorphous aluminum oxide/hydroxide). The results showed that leachate pH was the predominant factor influencing heavy metal leachability. The leaching of Cu, Pb, and Zn was mainly controlled by precipitation/dissolution reactions, whereas surface complexation had some effect on the leaching of Cr, Cd, and Ni for certain pH ranges. The modeling results aggreed well with the experimental results. Part of this work was presented at the Fourth International Conference on Combustion, Incineration/Pyrolysis and Emission Control (i-CIPEC)  相似文献   

17.
Removal of insoluble chloride from bottom ash for recycling   总被引:2,自引:0,他引:2  
In order to recycle bottom ash and use it as raw material for cement production, the removal of insoluble chloride was investigated by testing various washing techniques. The present work is also focused on investigating the properties of insoluble chlorides and determining the conditions for dissolving these compounds in order to reduce the chlorine content to the required level, i.e., less than 0.1 wt%. Within this framework, the effect of washing with water and CO2 bubbling was investigated, because the main insoluble chloride found in bottom ash, i.e., Friedel's salt, can be dissolved by CO2. Then, in order to better understand the removal of Cl, Friedel's salt was artificially synthesized by hydration and then the effect of CO2 bubbling was investigated. If all chlorides in the ash are converted into Friedel's salt by hydration, all chlorides can then be dissolved by CO2 bubbling. In addition, the effect of pH on removing the remaining insoluble chlorides was investigated by washing the ash with sulfuric acid solution. It was found that the most effective technique to reduce the Cl content to less than 1000 ppm was washing with sulfuric acid solution, while keeping the pH value at less than 4. By using this method, Friedel's salt and other insoluble chlorides were dissolved.  相似文献   

18.
Municipal solid waste incineration (MSWI) bottom ash is an atypical granular material because it may include industrial by-products that result from the incineration of domestic waste. The prospects for the beneficial use of this particular material mainly lie in the field of road construction, as a substitute for the traditional natural aggregates. However, its mechanical properties are still little known, particularly in term of stiffness and deformability, characteristics that are essential to the construction of a durable roadway. The purpose of this paper is to describe better the mechanical behaviour of this recycled material. In order to reach this objective, a large experimental campaign is presented. The first part of this paper presents and comments in detail on the results obtained from static monotonic tests. Oedometric and triaxial shear tests were performed on MSWI bottom ash both before and after treatment with a specific hydraulic binder. These tests allow specification of the mechanical characteristics of the MSWI bottom ash, such as the initial Young's modulus, Poisson's ratio, the compressibility index, the friction angle, and the contracting or dilating behaviour of the material. The results reveal a mechanical behaviour similar to that of initially dense standard materials (sands, unbound granular materials) and a dependence on the applied average pressure, characteristic of the mechanical behaviour of granular media. More laboratory data on other samples of MSWI bottom ash are required to ensure that this comparison is statistically valid.  相似文献   

19.
Journal of Material Cycles and Waste Management - This work is aimed at exploring the recovery of heavy metals from the fine fraction of solid waste incineration bottom ash. For this study,...  相似文献   

20.
Of the waste generated from electricity distribution networks, wooden posts treated with chromated copper arsenate (CCA) and ceramic insulators make up the majority of the materials for which no effective recycling scheme has been developed. This study aims to recycle and reuse this waste as reinforcement elements in polymer composites and hybrid composites, promoting an ecologically and economically viable alternative for the disposal of this waste. The CCA wooden posts were cut, crushed and recycled via acid leaching using 0.2 and 0.4 N H2SO4 in triplicate at 70 °C and then washed and dried. The ceramic insulators were fragmented in a hydraulic press and separated by particle size using a vibrating sieve. The composites were mixed in a twin-screw extruder and injected into the test specimens, which were subjected to physical, mechanical, thermal and morphological characterization. The results indicate that the acid treatment most effective for removing heavy metals in the wood utilizes 0.4 N H2SO4. However, the composites made from wood treated with 0.2 N H2SO4 exhibited the highest mechanical properties of the composites, whereas the use of a ceramic insulator produces composites with better thermal stability and impact strength. This study is part of the research and development project of ANEEL (Agência Nacional de Energia Elétrica) and funded by CPFL (Companhia Paulista de Força e Luz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号