首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
The surface emission of landfill gas (LFG) was studied to estimate the amount of LFG efflux from solid waste landfills using an air flux chamber. LFG efflux increased as atmospheric temperature increased during the day, and the same pattern for the surface emission was observed for the change of seasons. LFG efflux rate decreased from summer through winter. The average LFG efflux rates of winter, spring and summer were 0.1584, 0.3013 and 0.8597 m3 m−2 h−1 respectively. The total amount of surface emission was calculated based on the seasonal LFG efflux rate and the landfill surface area. From the estimates of LFG generation, it is expected that about 30% of the generated LFG may be released through the surface without extraction process. As forced extraction with a blower proceeded, the extraction well pressure decreased from 1100 to –100 mm H2O, and the LFG surface efflux decreased markedly above 80%. Thus, the utilization of LFG by forced extraction would be the good solution for global warming and air pollution by LFG.  相似文献   

2.
Abstract

The purpose of this paper is to develop a methodology to evaluate the feasibility of using landfill gas (LFG) as a liquefied natural gas (LNG) fuel source for heavy-duty refuse trucks operating on landfills. Using LFG as a vehicle fuel can make the landfills more self-sustaining, reduce their dependence on fossil fuels, and reduce emissions and greenhouse gases. Acrion Technologies Inc. in association with Mack Trucks Inc. developed a technology to generate LNG from LFG using the CO2 WASH process. A successful application of this process was performed at the Eco Complex in Burlington County, PA. During this application two LNG refuse trucks were operated for 600 hr each using LNG produced from gases from the landfill. The methodology developed in this paper can evaluate the feasibility of three LFG options: doing nothing, electricity generation, and producing LNG to fuel refuse trucks. The methodology involved the modeling of several components: LFG generation, energy recovery processes, fleet operations, economic feasibility, and decision-making. The economic feasibility considers factors such as capital, maintenance, operational, and fuel costs, emissions and tax benefits, and the sale of products such as surplus LNG and food-grade carbon dioxide (CO2).

Texas was used as a case study. The 96 landfills in Texas were prioritized and 17 landfills were identified that showed potential for converting LFG to LNG for use as a refuse truck fuel. The methodology was applied to a pilot landfill in El Paso, TX. The analysis showed that converting LFG to LNG to fuel refuse trucks proved to be the most feasible option and that the methodology can be applied for any landfill that considers this option.  相似文献   

3.
The purpose of this paper is to develop a methodology to evaluate the feasibility of using landfill gas (LFG) as a liquefied natural gas (LNG) fuel source for heavy-duty refuse trucks operating on landfills. Using LFG as a vehicle fuel can make the landfills more self-sustaining, reduce their dependence on fossil fuels, and reduce emissions and greenhouse gases. Acrion Technologies Inc. in association with Mack Trucks Inc. developed a technology to generate LNG from LFG using the CO2 WASH process. A successful application of this process was performed at the Eco Complex in Burlington County, PA. During this application two LNG refuse trucks were operated for 600 hr each using LNG produced from gases from the landfill. The methodology developed in this paper can evaluate the feasibility of three LFG options: doing nothing, electricity generation, and producing LNG to fuel refuse trucks. The methodology involved the modeling of several components: LFG generation, energy recovery processes, fleet operations, economic feasibility, and decision-making. The economic feasibility considers factors such as capital, maintenance, operational, and fuel costs, emissions and tax benefits, and the sale of products such as surplus LNG and food-grade carbon dioxide (CO2). Texas was used as a case study. The 96 landfills in Texas were prioritized and 17 landfills were identified that showed potential for converting LFG to LNG for use as a refuse truck fuel. The methodology was applied to a pilot landfill in El Paso, TX. The analysis showed that converting LFG to LNG to fuel refuse trucks proved to be the most feasible option and that the methodology can be applied for any landfill that considers this option.  相似文献   

4.
目前实际工程中通常采用现场抽气试验的方法确定垃圾填埋气收集系统的相关技术参数 ,这种方法不能对影响抽气效果的因素综合分析并加以优化。本文利用竖井抽气条件下填埋气压力分布模型 ,分析讨论了抽气系统各参数对对抽气效果的影响 ,提出了垃圾填埋场填埋气竖井收集系统的抽气量、抽气井影响半径、抽气井埋深的优化设计方法 ,可为填埋气污染控制与回收利用系统的规划设计及运行管理提供技术支持  相似文献   

5.
Landfill gas (LFG)-to-energy plants in Turkey were investigated, and the LFG-to-energy plant of a metropolitan municipal landfill was monitored for 3 years. Installed capacities and actual gas engine working hours were determined. An equation was developed to estimate the power capacity for LFG-to-energy plants for a given amount of landfilled waste. Monitoring the actual gas generation rates enabled determination of LFG generation factors for Turkish municipal waste. A significant relationship (R = 0.524, p < 0.01, two-tailed) was found between the amounts of landfilled waste and the ambient temperature, which can be attributed to food consumption and kitchen waste generation behaviors influenced by the ambient temperature. However, no significant correlation was found between the ambient temperature and the generated LFG. A temperature buffering capacity was inferred to exist within the landfill, which enables the anaerobic reactions to continue functioning even during cold seasons. The average LFG and energy generation rates were 45 m3 LFG/ton waste landfilled and 0.08 MWhr/ton waste landfilled, respectively. The mean specific LFG consumption for electricity generation was 529 ± 28 m3/MWhr.

Implications: The paper will be useful for local authorities who need to manage municipal waste by using landfills. The paper will also be useful for investors who want to evaluate the energy production potential of municipal wastes and the factors affecting the energy generation process mostly for economical purposes. Landfills can be regarded as energy sources and their potentials need to be investigated. The paper will also be useful for policymakers dealing with energy issues. The paper contains information on real practical data such as engine working hours, equation to estimate the necessary power for a given amount of landfilled waste, and son on.  相似文献   


6.
ABSTRACT

The increase in solid waste generation has been a major contributor to the amount of Greenhouse gases (GHGs) present in the atmosphere. To some extent, a great chunk of these GHGs in the atmosphere is from landfill. This study assesses two theoretical models (LandGEM and Afvalzorg models) to estimate the amount of landfill gas (LFG) emitted from Thohoyandou landfill site. Also, the LFGcost Web model was used to estimate the cost and benefits of the implementation of an LFG utilization technology. The Thohoyandou landfill started operations in the year 2005 and it is proposed to reach its peak at approximately in the year 2026. The LandGEM calculates the mass of landfill gas emission using methane generation capacity, mass of deposited waste, methane generation constant and methane generation rate. Meanwhile, the Afvalzorg model determines the LFG emissions using the Methane correction factor, yearly waste mass disposal, waste composition, Degradation Organic Carbon, methane generation rate constant, LFG recovery efficiency. The study findings indicate that the methane (CH4) and carbon dioxide (CO2) emitted from the landfill estimated from LandGEM will peak in the year 2026 with values of 3517 Mg/year and 9649 Mg/year, respectively. Results from the Afvalzorg model show that CH4 emission will peak in the year 2026 (3336 Mg/year). The LandGEM model showed that the total LFG, CH4 and CO2 emitted from the landfill between 2005 and 2040 are 293239.3 Mg/year, 78325.7 Mg/year and 214908.6 Mg/year, respectively. The simulation from the Afvalzorg model found that the CH4 emitted from the years 2005– 2040 is 74302 Mg/year. The implementation of an LFG utilization technology was economically feasible from consideration of the sales of electricity generated and Certified Emission Reductions (CER) (carbon credits).  相似文献   

7.
Dramatic increases in the development of oil and natural gas from shale formations will result in large quantities of drill cuttings, flowback water, and produced water. These organic-rich shale gas formations often contain elevated concentrations of naturally occurring radioactive materials (NORM), such as uranium, thorium, and radium. Production of oil and gas from these formations will also lead to the development of technologically enhanced NORM (TENORM) in production equipment. Disposal of these potentially radium-bearing materials in municipal solid waste (MSW) landfills could release radon to the atmosphere. Risk analyses of disposal of radium-bearing TENORM in MSW landfills sponsored by the Department of Energy did not consider the effect of landfill gas (LFG) generation or LFG control systems on radon emissions. Simulation of radon emissions from landfills with LFG generation indicates that LFG generation can significantly increase radon emissions relative to emissions without LFG generation, where the radon emissions are largely controlled by vapor-phase diffusion. Although the operation of LFG control systems at landfills with radon source materials can result in point-source atmospheric radon plumes, the LFG control systems tend to reduce overall radon emissions by reducing advective gas flow through the landfill surface, and increasing the radon residence time in the subsurface, thus allowing more time for radon to decay. In some of the disposal scenarios considered, the radon flux from the landfill and off-site atmospheric activities exceed levels that would be allowed for radon emissions from uranium mill tailings.

Implications: Increased development of hydrocarbons from organic-rich shale formations has raised public concern that wastes from these activities containing naturally occurring radioactive materials, particularly radium, may be disposed in municipal solid waste landfills and endanger public health by releasing radon to the atmosphere. This paper analyses the processes by which radon may be emitted from a landfill to the atmosphere. The analyses indicate that landfill gas generation can significantly increase radon emissions, but that the actual level of radon emissions depend on the place of the waste, construction of the landfill cover, and nature of the landfill gas control system.  相似文献   

8.
生活垃圾可持续化填埋   总被引:5,自引:0,他引:5  
通过对中国填埋场现状分析,提出了"可持续填理"的概念.认为生活垃圾填埋场将从单纯的最终处置场所演变为填埋与中转相结合的场所.填埋场的可持续发展也将从两方面得到体现:一为垃圾降解过程及其副产品处理中以能量形式得到利用,另一方面为稳定化后的垃圾及填埋场本身空间得到再一次的利用.  相似文献   

9.
填埋场沼气发电的温室气体减排效益分析   总被引:2,自引:0,他引:2  
填埋场沼气是垃圾卫生填埋场产生的可利用资源.以深圳下坪垃圾填埋场为例,定量分析垃圾填埋气体发电的温室气体减排效益.结果表明,填埋场沼气发电具有很好的经济效益和环境效益,可作为与发达国家进行CDM(清洁发展机制)项目合作的优先技术领域.  相似文献   

10.
Landfill gas (LFG) management is one of the most important tasks for landfill operation and closure because of its impact in potential global warming. The aim of this work is to present a case history evaluating an LFG capture and treatment system for the present landfill facility in Córdoba, Argentina. The results may be relevant for many developing countries around the world where landfill gas is not being properly managed. The LFG generation is evaluated by modeling gas production applying the zero-order model, Landfill Gas Emissions Model (LandGEM; U.S. Environmental Protection Agency [EPA]), Scholl Canyon model, and triangular model. Variability in waste properties, weather, and landfill management conditions are analyzed in order to evaluate the feasibility of implementing different treatment systems. The results show the advantages of capturing and treating LFG in order to reduce the emissions of gases responsible for global warming and to determine the revenue rate needed for the project’s financial requirements. This particular project reduces by half the emission of equivalent tons of carbon dioxide (CO2) compared with the situation where there is no gas treatment. In addition, the study highlights the need for a change in the electricity prices if it is to be economically feasible to implement the project in the current Argentinean electrical market.

Implications: Methane has 21 times more greenhouse gas potential than carbon dioxide. Because of that, it is of great importance to adequately manage biogas emissions from landfills. In addition, it is environmentally convenient to use this product as an alternative energy source, since it prevents methane emissions while preventing fossil fuel consumption, minimizing carbon dioxide emissions. Performed analysis indicated that biogas capturing and energy generation implies 3 times less equivalent carbon dioxide emissions; however, a change in the Argentinean electrical market fees are required to guarantee the financial feasibility of the project.  相似文献   


11.
The removal characteristics of trace compounds and moisture in raw landfill gas (LFG) were studied. The LFG from the extraction well was saturated with water and moisture was eliminated by physical methods including cyclone-type dehydrator and compressor. The moisture removal efficiency of dehydrator and compressor was above 80%. As the moisture contents of LFG decreased, the toxic compounds like aromatics and chlorinated compounds were effectively removed by using the granular activated carbon. The breakthrough time and adsorption capacity of benzene, toluene, and ethyl benzene decreased rapidly when the relative humidity is over 60%. The effect of moisture was more pronounced at lower adsorbate concentrations tested than at higher concentrations. The breakthrough curves for multi-component mixtures show displacement effects. In the course of competing adsorption, adsorbates with strong interaction force to displace weakly bounded substances. Adsorption by activated carbon is in descending order of xylene, ethylbenzene, toluene, tri or tetrachloroethylene, benzene, carbon tetrachloride and chloroform in LFG, respectively.  相似文献   

12.
Parties to the LRTAP convention have agreed to annually report atmospheric emissions and are required to set up an emission inventory. As a minimum, parties shall use the latest version of the EMEP/EEA Air Pollutant Inventory Guidebook, but most countries – including the Netherlands – have set up their own inventory, which uses country specific information to supplement the information from the Guidebook. In this study, emissions estimated within the Dutch Emission Inventory are compared to emissions estimated using Guidebook emission factors and Dutch statistics for the year 2005. The objective is to explore the quality of both methods and to find major differences and similarities. The comparison shows that for most sources, emission estimates are within uncertainty ranges for both methodologies, especially for sources where a higher Tier (more detailed) methodology is used to estimate the emissions. This is in line with the Guidelines which indicate that for key categories a more detailed methodology should be used. The comparison also shows some surprising differences, such as large differences in emission factors (especially Tier 1) and missing sources (fireworks and abrasion of railway overhead wires, causing 16% of total copper emissions in the Netherlands) which have not been included in the Guidebook. This comparison is shown to be a useful tool to identify areas where improvements and further research are necessary.  相似文献   

13.
A performance-based method for evaluating methane (CH4) oxidation as the best available control technology (BACT) for passive management of landfill gas (LFG) was applied at a municipal solid waste (MSW) landfill in central Washington, USA, to predict when conditions for functional stability with respect to LFG management would be expected. The permitted final cover design at the subject landfill is an all-soil evapotranspirative (ET) cover system. Using a model, a correlation between CH4 loading flux and oxidation was developed for the specific ET cover design. Under Washington’s regulations, a MSW landfill is functionally stable when it does not present a threat to human health or the environment (HHE) at the relevant point of exposure (POE), which was conservatively established as the cover surface. Approaches for modeling LFG migration and CH4 oxidation are discussed, along with comparisons between CH4 oxidation and biodegradation of non-CH4 organic compounds (NMOCs). The modeled oxidation capacity of the ET cover design is 15 g/m2/day under average climatic conditions at the site, with 100% oxidation expected on an annual average basis for fluxes up to 8 g/m2/day. This translates to a sitewide CH4 generation rate of about 260 m3/hr, which represents the functional stability target for allowing transition to cover oxidation as the BACT (subject to completion of a confirmation monitoring program). It is recognized that less than 100% oxidation might occur periodically if climate and/or cover conditions do not precisely match the model, but that residual emissions during such events would be de minimis in comparison with published limit values. Accordingly, it is also noted that nonzero net emissions may not represent a threat to HHE at a POE (i.e., a target flux between 8 and 15 g/m2/day might be appropriate for functional stability) depending on the site reuse plan and distance to potential receptors.

Implications: This study provides a scientifically defensible method for estimating when methane oxidation in landfill cover soils may represent the best available control technology for residual landfill gas (LFG) emissions. This should help operators and regulators agree on the process of safely eliminating active LFG controls in favor of passive control measures once LFG generation exhibits asymptotic trend behavior below the oxidation capacity of the soil. It also helps illustrate the potential benefits of evolving landfill designs to include all-soil vegetated evapotranspirative (ET) covers that meet sustainability objectives as well as regulatory performance objectives for infiltration control.  相似文献   


14.
The trend toward increased use of central refuse incinerators is inevitably contributing to urban air pollution. Eventually sampling ports, emission sensing and recording equipment will be required; and more detailed data will be available. But, tradilionally, discharges have been estimated by means of emission factors for nominal design loadings. Such estimates may be unreliable, especially under highly variable processing rates.

Preliminary evidence suggests lhat actual emission factors are higher when the incinerator is charged at greater rates, and vice versa. Observations at the Boston municipal incinerator indicate considerable day-to-day variability in refuse loading. No measurements of emissions are made, but daily input loading records for several years are available.

This study focuses upon the variability in daily loadings. Several functions relating emission factors to charging rates are assumed in order to estimate variability in discharges to the atmosphere. Four years of daily records were analyzed for day-of-week and seasonal components, as well as secular trends. Further analysis suggested that some of the remaining variation in observations could be explained in connection with holidays and precipitation.

The implications of conventionally designed holding pits and charging policies on air pollution problems are discussed in view of such variability, and alternatives are suggested.  相似文献   

15.

The investigation of municipal solid waste (MSW) treatment in China is rare due to its sensitivity and difficulty in terms of access. We chose Beijing, the capital of China, as an example to identify the characteristics of MSW landfill treatments using a 2-month investigation with 20 participants. MSW landfill treatments account for nearly 70% of the annual MSW disposal in Beijing; the landfill processes are equipped with many kinds of technologies and consume a large amount of energy and produce a variety of contaminants. The cover method (the most obvious difference in landfill tamping) mainly includes high-density polyethylene (HDPE) geomembranes with loess and soil alone (i.e., loess or sandy soil). We investigated the actual conditions of landfills and collected data on leachate and landfill gas (LFG) emissions and energy consumption during 2009–2011. The results indicated that the cover method employed by landfills was related to treatment quantity, operation, and especially landfill location. Early large-scale landfills located in plains were covered with HDPE geomembranes, and newly built landfills covered with soil tended to be equipped with HDPE covers. Using HDPE cover also contributed greatly to LFG production due to its impermeability but had no remarkable effect on leachate yield reduction due to the dry climate in Beijing. The potential was reinforced by the potentials of decrement and reuse. The disposal method of LFG can be optimized, and the power generated by the LFG process can meet the landfill demand. The gray water recycled from the leachate could be used in the landfill process.

  相似文献   

16.

Background, aim and scope  

Landfill gas (LFG) tends to escape from the landfill surface even when LFG collecting systems are installed. Since LFG leaks are generally a noticeable percentage of the total production of LFG, the optimisation of the collection system is a fundamental step for both energy recovery and environmental impact mitigation. In this work, we suggest to take into account the results of direct measurements of gas fluxes at the air–cover interface to achieve this goal.  相似文献   

17.
Sanitary landfilling is used in many countries as a preferred method for disposal of household wastes for reasons of simplicity and economics. Immediately following its deposition within a landfill, most of the organic fraction of waste will begin to undergo degradation through chemical and bacterial action. Landfill gas (LFG) is a product of biodegradation and consists of primarily methane (explosive) and carbon dioxide, with trace amounts of other volatiles that are often toxic gases (for example, vinyl chloride). LFG can migrate through the soil away from the landfill site and appear at the surface away from where it started. Since methane presents a fire or explosive threat, LFG must be controlled to protect property and public safety. To aid this, consideration must be given to models. Therefore, this study was undertaken to develop a simple numerical model by using a finite difference method in order to predict gas migration through the soil surrounding the landfill. The model construction was described as well as the landfill and its surrounding soil. The model was applied to predict methane and vinyl chloride concentrations at different distances from the landfill. Comparison between the predicted and measured values was calculated to evaluate the validity of the model. The agreement between measured and predicted concentrations was found, and this agreement is sufficiently good  相似文献   

18.
Mercury-bearing material has been placed in municipal landfills from a wide array of sources including fluorescent lights, batteries, electrical switches, thermometers, and general waste. Despite its known volatility, persistence, and toxicity in the environment, the fate of mercury in landfills has not been widely studied. The nature of landfills designed to reduce waste through generation of methane by anaerobic bacteria suggests the possibility that these systems might also serve as bioreactors for the production of methylated mercury compounds. The toxicity of such species mandates the need to determine if they are emitted in municipal landfill gas (LFG). In a previous study, we had measured levels of total gaseous mercury (TGM) in LFG in the μg/m3 range in two Florida landfills, and elevated levels of monomethyl mercury (MMM) were identified in LFG condensate, suggesting the possible existence of gaseous organic Hg compounds in LFG. In the current study, we measured TGM, Hg0, and methylated mercury compounds directly in LFG from another Florida landfill. Again, TGM was in the μg/m3 range, MMM was found in condensate, and this time we positively identified dimethyl mercury (DMM) in the LGF in the ng/m3 range. These results identify landfills as a possible anthropogenic source of DMM emissions to air, and may help explain the reports of MMM in continental rainfall.  相似文献   

19.
本文对我国垃圾焚烧处理的现状和发展趋势进行了综述。垃圾焚烧处理符合资源化、减量化和无害化的原则,由于经济技术水平的限制,我国城市垃圾的处理主要是以填埋和堆肥为主,焚烧法处理占的比例较少,随着经济技术水平的提高,焚烧处理垃圾将得到迅速的发展。我国垃圾焚烧处理的发展应积极的引进、吸收、消化国外的先进技术,开发生产适合我国国情的垃圾焚烧设备;加强法规建设,实现垃圾焚烧处理的规范化管理;开发废气净化设备及其二次污染控制设备;确保焚烧废气达标排放;有效的对垃圾焚烧排放污染物的监控,保证垃圾焚烧处理设施安全、高效的运行。  相似文献   

20.
Conventional types of municipal incinerators generate enormous quantities of stack gas because of high excess air and high temperatures. Under these conditions the size and cost of equipment to clean the flue gas to low dust contents are large. By burning the refuse in boiler furnaces at low excess air, and generating steam, the volume of flue gas to be cleaned is reduced to a minimum. Where high efficiency of flue-dust collection is required, steam generation from refuse firing permits a major saving on the cost of dust collection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号