首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 805 毫秒
1.
ABSTRACT

Standard approaches for computing population exposures due to specific sources of air pollutants are relatively complex. In many cases, more simple and approximate methods would be useful. This paper develops an approach, based on the concept of exposure efficiency, that may be used for estimating the impact of a source (or source class) on the integrated population exposure. The approach is illustrated by an example, which uses the concept of exposure efficiency to examine the impact of perchloroeth-ylene emissions from dry cleaners in the United States. The paper explores the geographic variability of exposure efficiency by evaluating it for each of 100 randomly selected dry cleaners. For perchloroethylene, which has a long atmospheric residence time, the site-to-site variability in exposure efficiency is found to be relatively small. This suggests that simple exposure assessments, based on generic distributional characterizations of exposure efficiency, may be used in risk assessments without introducing appreciable uncertainty. For many compounds, like perchloroethylene, the uncertainty inherent in the estimation of cancer potency or source emissions would dominate these small errors.  相似文献   

2.
Quantitative assessment of human exposures and health effects due to air pollution involve detailed characterization of impacts of air quality on exposure and dose. A key challenge is to integrate these three components on a consistent spatial and temporal basis taking into account linkages and feedbacks. The current state-of-practice for such assessments is to exercise emission, meteorology, air quality, exposure, and dose models separately, and to link them together by using the output of one model as input to the subsequent downstream model. Quantification of variability and uncertainty has been an important topic in the exposure assessment community for a number of years. Variability refers to differences in the value of a quantity (e.g., exposure) over time, space, or among individuals. Uncertainty refers to lack of knowledge regarding the true value of a quantity. An emerging challenge is how to quantify variability and uncertainty in integrated assessments over the source-to-dose continuum by considering contributions from individual as well as linked components. For a case study of fine particulate matter (PM2.5) in North Carolina during July 2002, we characterize variability and uncertainty associated with each of the individual concentration, exposure and dose models that are linked, and use a conceptual framework to quantify and evaluate the implications of coupled model uncertainties. We find that the resulting overall uncertainties due to combined effects of both variability and uncertainty are smaller (usually by a factor of 3–4) than the crudely multiplied model-specific overall uncertainty ratios. Future research will need to examine the impact of potential dependencies among the model components by conducting a truly coupled modeling analysis.  相似文献   

3.
The vast majority of dry cleaners worldwide use the toxic chemical perchloroethylene (PCE), which is associated with a number of adverse health and environmental impacts. Professional wet cleaning was developed as a nontoxic alternative to PCE dry cleaning but has not been widely adopted as substitute technology. In the greater Los Angeles, CA, region, a demonstration project was set up to showcase this technology and evaluate its commercial viability by converting seven cleaners from PCE dry cleaning to professional wet cleaning. The demonstration site cleaners who switched to professional wet cleaning were able to maintain their level of service and customer base while lowering operating costs. The cleaners were able to transition to professional wet cleaning without a great degree of difficulty and expressed a high level of satisfaction with professional wet cleaning. Crucial to this success was the existence of the demonstration project, which helped to develop a supporting infrastructure for professional wet cleaning that had otherwise been lacking in the garment care industry.  相似文献   

4.
Approximately 25, 000–35, 000 dry cleaning facilities currently operate in the U.S. The release of perchloroethylene and other solvents from these establishments represents a major source of soil and groundwater contamination. The manner in which dry cleaning solvents escape from dry cleaning plants is, for all practical purposes, identical for chlorinated and petroleum hydrocarbon solvents and is related to one of the following events: the catastrophic failure of a component of the dry cleaning system, the improper installation, operation or maintenance of the dry cleaning equipment or a combination of all of these causes. Acceptable customs, codes and regulations can also dictate what is authorized for operation of a dry cleaning facility in a particular community, geographic area during a particular time frame. Environmental litigation dealing with the origin of a solvent release from dry cleaners tends to focus on the design and manufacture of dry cleaning industry machines such as washers, washer extractors, tumblers, solvent filters, water separators, stills and spotting boards. A thorough analysis of the daily operations of dry cleaners often reveals that poor maintenance, failure to follow the manufacturer's instructions and the actions of the operator are the most likely causes of soil and groundwater pollution. In order to forensically evaluate the most probable origins of a solvent release and to examine issues regarding liability, a thorough understanding of the history of dry cleaning and a detailed analysis of the operation and maintenance of the dry cleaning equipment are necessary. The discovery of solvent plumes in the vicinity of dry cleaning plants may suggest that the solvent source is the dry cleaning plant; however, the presence of these plumes does not necessarily indicate that the dry cleaning equipment was defectively designed or manufactured. A thorough review of the type of equipment used over the life of the dry cleaning plant and verifiable solvent mileage records frequently indicates that operators of the plant have disposed of solvent and contaminated solids into the municipal sewer or on ground surfaces.  相似文献   

5.
Approximately 25, 000-35, 000 dry cleaning facilities currently operate in the U.S. The release of perchloroethylene and other solvents from these establishments represents a major source of soil and groundwater contamination. The manner in which dry cleaning solvents escape from dry cleaning plants is, for all practical purposes, identical for chlorinated and petroleum hydrocarbon solvents and is related to one of the following events: the catastrophic failure of a component of the dry cleaning system, the improper installation, operation or maintenance of the dry cleaning equipment or a combination of all of these causes. Acceptable customs, codes and regulations can also dictate what is authorized for operation of a dry cleaning facility in a particular community, geographic area during a particular time frame. Environmental litigation dealing with the origin of a solvent release from dry cleaners tends to focus on the design and manufacture of dry cleaning industry machines such as washers, washer extractors, tumblers, solvent filters, water separators, stills and spotting boards. A thorough analysis of the daily operations of dry cleaners often reveals that poor maintenance, failure to follow the manufacturer's instructions and the actions of the operator are the most likely causes of soil and groundwater pollution. In order to forensically evaluate the most probable origins of a solvent release and to examine issues regarding liability, a thorough understanding of the history of dry cleaning and a detailed analysis of the operation and maintenance of the dry cleaning equipment are necessary. The discovery of solvent plumes in the vicinity of dry cleaning plants may suggest that the solvent source is the dry cleaning plant; however, the presence of these plumes does not necessarily indicate that the dry cleaning equipment was defectively designed or manufactured. A thorough review of the type of equipment used over the life of the dry cleaning plant and verifiable solvent mileage records frequently indicates that operators of the plant have disposed of solvent and contaminated solids into the municipal sewer or on ground surfaces.  相似文献   

6.
A general modeling approach is proposed to predict the distribution of air pollutant concentrations and in particular the upper percentiles. The approach is hybrid in that it combines features of both deterministic and statistical distribution models. These features include causality and the attempted quantification of stochastic variability and uncertainty. The properties of deterministic and statistical distribution models are discussed separately and this clarifies the contribution that can be made by hybrid modeling. In this way the underlying assumptions are clearly presented. The range of successful applications of the hybrid approach is briefly reviewed. These involve relatively inert pollutants from urban/industrial, point source, elevated point source and roadway emissions. Areas of further research are outlined which would enhance the routine use of the approach and extend its application. Sufficient development has been undertaken, however, that the present standard set of air pollutant dispersion models could be easily updated to provide hybrid models capable of predicting frequency distributions of air pollutant levels under stipulated assumptions.  相似文献   

7.
This paper evaluates the contribution of (i) uncertainty in substance properties, (ii) lack of spatial variability, (iii) intermodel differences and (iv) neglecting sorption to black carbon (BC) to the uncertainty of Benzo[a]pyrene (BaP) concentrations in European air, soil and fresh water predicted by the multi-media fate model Simplebox. Uncertainty in substance properties was quantified using probabilistic modeling. The influence of spatial variability was quantified by estimating variation in predicted concentrations with three spatially explicit fate models (Impact 2002, EVn BETR and BETR Global). Intermodel differences were quantified by comparing concentration estimates of Simplebox, Impact 2002, EVn BETR and the European part of BETR Global. Finally, predictions of a BC-inclusive version of Simplebox were compared with predictions of a BC-exclusive version. For air concentrations of BaP, the lack of spatial variability in emissions was most influential. For freshwater concentrations of BaP, intermodel differences and lack of spatial variability in dimensions of fresh water bodies were the dominant sources of uncertainty. For soil, all sources of uncertainty were of comparable magnitude. Our results indicate that uncertainty in Simplebox can be as large as three orders of magnitude for BaP concentrations in the environment and would be substantially underestimated by focusing on one source of uncertainty only.  相似文献   

8.
The issue of fine particle (PM2.5) exposures and their potential health effects is a focus of scientific research because of the recently promulgated National Ambient Air Quality Standard for PM2.5. Before final implementation, the health and exposure basis for the standard will be reviewed by the U.S. Environmental Protection Agency within the next five years. As part of this process, it is necessary to understand total particle exposure issues and to determine the relative importance of the origin of PM2.5 exposure in various micro-environments. The results presented in this study examine emissions of fine particles from a previously uncharacterized indoor source: the residential vacuum cleaner. Eleven standard vacuum cleaners were tested for the emission rate of fine particles by their individual motors and for their efficiency in collecting laboratory-generated fine particles. An aerosol generator was used to introduce fine potassium chloride (KCl) particles into the vacuum cleaner inlet for the collection efficiency tests. Measurements of the motor emissions, which include carbon, and the KCl aerosol were made using a continuous HIAC/Royco 5130 A light-scattering particle detector. All tests were conducted in a metal chamber specifically designed to completely contain the vacuum cleaner and operate it in a stationary position. For the tested vacuum cleaners, fine particle motor emissions ranged from 9.6 x 10(4) to 3.34 x 10(8) particles/min, which were estimated to be 0.028 to 176 micrograms/min for mass emissions, respectively. The vast majority of particles released were in the range of 0.3-0.5 micron in diameter. The lowest particle emission rate was obtained for a vacuum cleaner that had a high efficiency (HEPA) filter placed after the vacuum cleaner bag and the motor within a sealed exhaust system. This vacuum cleaner removed the KCl particles that escaped the vacuum cleaner bag and the particles emitted by the motor. Results obtained for the KCl collection efficiency tests show > 99% of the fine particles were captured by the two vacuum cleaners that used a HEPA filter. A series of tests conducted on two vacuum cleaners found that the motors also emitted ultra-fine particles above 0.01 micron in diameter at rates of greater than 10(8) ultra-fine particles/CF of air. The model that had the best collection efficiency for fine particles also reduced the ultra-fine particle emissions by a factor of 1 x 10(3).  相似文献   

9.
ABSTRACT

Measurements of residual perchloroethylene (PCE), a dry-cleaning solvent associated with human health effects, were made in dry-cleaned acetate cloth to enable improved characterizations of both occupational and environmental exposure. A limited sample size (25 acetate cloths) was used to explore the extent of inter-dry-cleaner variability in residual PCE and to characterize the effect of the pressing operation on residual PCE. A new method, which uses carbon-disulfide as the direct extracting agent, proved effective in the analysis of residual PCE, with a recovery-efficiency ≈ 75%. Inter-dry-cleaner variability of residual PCE, although marginally statistically significant, was relatively low, showing only a fourfold range compared to a 5-order-of-magnitude range obtained from Kawauchi and Nishiyama1. Pairwise comparison of residual PCE in nonpressed versus pressed acetate samples revealed a statistically significant reduction (p < 0.008), which amounted to a consistent (among dry-cleaners) pressing-related removal efficiency of 75 ± 4%. A preliminary assessment of the source term associated with the pressing operation (mass PCE liberated per kg cloth dry-cleaned, SPCE ≈ 30 mg/kg) indicates a minor contribution to the average ambient air concentrations within dry-cleaning establishments.  相似文献   

10.
Exposure efficiency: an idea whose time has come?   总被引:1,自引:0,他引:1  
Evans JS  Wolff SK  Phonboon K  Levy JI  Smith KR 《Chemosphere》2002,49(9):1075-1091
  相似文献   

11.
ABSTRACT

The issue of fine particle (PM25) exposures and their potential health effects is a focus of scientific research because of the recently promulgated National Ambient Air Quality Standard for PM2 5. Before final implementation, the health and exposure basis for the standard will be reviewed by the U.S. Environmental Protection Agency within the next five years. As part of this process, it is necessary to understand total particle exposure issues and to determine the relative importance of the origin of PM2 5 exposure in various micro-environments. The results presented in this study examine emissions of fine particles from a previously uncharacterized indoor source: the residential vacuum cleaner. Eleven standard vacuum cleaners were tested for the emission rate of fine particles by their individual motors and for their efficiency in collecting laboratory-generated fine particles. An aerosol generator was used to introduce fine potassium chloride (KC1) particles into the vacuum cleaner inlet for the collection efficiency tests. Measurements of the motor emissions, which include carbon, and the KCl aerosol were made using a continuous HIAC/Royco 5130A light-scattering particle detector. All tests were conducted in a metal chamber specifically designed to completely contain the vacuum cleaner and operate it in a stationary position. For the tested vacuum cleaners, fine particle motor emissions ranged from 9.6 x 104 to 3.34 x 108 particles/min, which were estimated to be 0.028 to 176 mg/min for mass emissions, respectively. The vast majority of particles released were in the range of 0.3-0.5 mm in diameter. The lowest particle emission rate was obtained for a vacuum cleaner that had a high efficiency (HEPA) filter placed after the vacuum cleaner bag and the motor within a sealed exhaust system. This vacuum cleaner removed the KC1particles that escaped the vacuum cleaner bag and the particles emitted by the motor. Results obtained for the KC1 collection efficiency tests show >99% of the fine particles were captured by the two vacuum cleaners that used a HEPA filter. A series of tests conducted on two vacuum cleaners found that the motors also emitted ultra-fine particles above 0.01 mm in diameter at rates of greater than 108 ultra-fine particles/CF of air. The model that had the best collection efficiency for fine particles also reduced the ultra-fine particle emissions by a factor of 1 x 103.  相似文献   

12.
The ongoing program Clean Air for Europe (CAFE) is an initiative from the EU Commission to establish a coordinated effort to reach better air quality in the EU. The focus is on particulate matter as it has been shown to have large impact on human health. CAFE requested that WHO make a review of the latest findings on air pollutants and health to facilitate assessments of the different air pollutants and their health effects. The WHO review project on health aspects of air pollution in Europe confirmed that exposure to particulate matter (PM), despite the lower levels we face today, still poses a significant risk to human health. Using the recommended uniform risk coefficients for health impact assessment of PM, regardless of sources, premature mortality related to long-range transported anthropogenic particles has been estimated to be about 3500 deaths per year for the Swedish population, corresponding to a reduction in life expectancy of up to about seven months. The influence of local sources is more difficult to estimate due to large uncertainties when linking available risk coefficients to exposure data, but the estimates indicate about 1800 deaths brought forward each year with a life expectancy reduction of about 2-3 months. However, some sectors of the population are exposed to quite high locally induced concentrations and are likely to suffer excessive reductions in life expectancy. Since the literature increasingly supports assumptions that combustion related particles are associated with higher relative risks, further studies may shift the focus for abatement strategies. CAFE sets out to establish a general cost effective abatement strategy for atmospheric particles. Our results, based on studies of background exposure, show that long-range transported sulfate rich particles dominate the health effects of PM in Sweden. The same results would be found for the whole of Scandinavia and many countries influenced by transboundary air pollution. However, several health studies, including epidemiological studies with a finer spatial resolution, indicate that engine exhaust particles are more damaging to health than other particles. These contradictory findings must be understood and source specific risk estimates have to be established by expert bodies, otherwise it will not be possible to find the most cost effective abatement strategy for Europe. We are not happy with today's situation where every strategy to reduce PM concentrations is estimated to have the same impact per unit change in the mass concentration. Obviously there is a striking need to introduce more specific exposure variables and a higher geographical resolution in epidemiology as well as in health impact assessments.  相似文献   

13.
Incidental exposure to high explosive compounds can cause subtle health effects to which a population could be more susceptible than injury by detonation. Proper source characterization is a key requirement in the conduct of risk assessments. For nonvolatile solid explosives, dissolution is one of the primary mechanisms that controls fate and transport, resulting in exposure to these compounds remote from their source. To date, information describing dissolution rates of high explosives has been sparse. The objective of this study was to determine the dissolution rates of three high explosive compounds, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), in dilute aqueous solutions as a function of temperature, surface area, and energy input. To determine each variable's impact on dissolution rate, experiments were performed where one variable was changed while the other two were held constant. TNT demonstrated the fastest dissolution rate followed by HMX and then RDX. Dissolution rate correlation equations were developed for each explosive compound incorporating the three aforementioned variables, independently, and collectively in one correlation equation.  相似文献   

14.
Chen YC  Ma HW 《Chemosphere》2006,63(5):751-761
Many environmental multimedia risk assessment models have been developed and widely used along with increasing sophistication of the risk assessment method. Despite of the considerable improvement, uncertainty remains a primary threat to the credibility of and users' confidence in the model-based risk assessments. In particular, it has been indicated that scenario and model uncertainty may affect significantly the assessment outcome. Furthermore, the uncertainty resulting from choosing different models has been shown more important than that caused by parameter uncertainty. Based on the relationship between exposure pathways and estimated risk results, this study develops a screening procedure to compare the relative suitability between potential multimedia models, which would facilitate the reduction of uncertainty due to model selection. MEPAS, MMSOILS, and CalTOX models, combined with Monte Carlo simulation, are applied to a realistic groundwater-contaminated site to demonstrate the process. It is also shown that the identification of important parameters and exposure pathways, and implicitly, the subsequent design of uncertainty reduction and risk management measures, would be better-formed.  相似文献   

15.
Bruce K. Hope 《Chemosphere》1995,30(12):2267-2287
In instances where empirical measurements are not practicable, ecological risk assessments may rely on site-specific exposure models for estimating uptake of chemical contaminants. This paper presents, based on a review of the literature, a compilation of relatively simple quantitative models that can be combined to produce site- and species-specific first-order estimates of uptake of chemicals from abiotic media. These models have proved useful in providing order-of-magnitude estimates for screening and sample program design purposes. This paper intended as both a practical guide for choosing models to estimate terrestrial wildlife exposures and as a step toward development of a more comprehensive and standard approach to exposure assessment in terrestrial ecological receptors.  相似文献   

16.
Since the Bhopal incident, the public has placed pressure on regulatory agencies to set community exposure limits for the dozens of chemicals that may be released by manufacturing facilities. More or less objective limits can be established for the vast majority of these chemicals through the use of risk assessment. However, each step of the risk assessment process (i.e., hazard identification, dose-response assessment, exposure assessment, and risk characterization) contains a number of pitfalls that scientists need to avoid to ensure that valid limits are established. For example, in the hazard identification step there has been little discrimination among animal carcinogens with respect to mechanism of action or the epidemiology experience. In the dose-response portion, rarely is the range of “plausible” estimated risks presented. Physiologically based pharmacokinetic (PB-PK) models should be used to understand the difference between the tissue doses and the administered dose, as well as the difference in target tissue concentrations of the toxicant between rodents and humans. Biologically-based models like the Moolgavkar-Knudson-Venzon (MKV) should be developed and used, when appropriate. The exposure assessment step can be significantly improved by using more sensitive and specific sampling and analytical methods, more accurate exposure parameters, and computer models that can account for complex environmental factors. Whenever possible, model predictions of exposure and uptake should be validated by biological monitoring of exposed persons (urine, blood, adipose) or by field measurements of plants, soil, fish, air, or water. In each portion of an assessment, the weight of evidence approach should be used to identify the most defensible value. In the risk characterization, the best estimate of the potential risk as well as the highest plausible risk should be presented. Future assessments would be much improved if quantitative uncertainty analyses were conducted. Procedures are currently available for making future assessments. By correcting some of these shortcomings in how health risk assessments have been conducted, scientists and risk managers should be better able to identify scientifically appropriate ambient air standards and emission limits.  相似文献   

17.
Since the Bhopal incident, the public has placed pressure on regulatory agencies to set community exposure limits for the dozens of chemicals that may be released by manufacturing facilities. More or less objective limits can be established for the vast majority of these chemicals through the use of risk assessment. However, each step of the risk assessment process (i.e., hazard identification, dose-response assessment, exposure assessment, and risk characterization) contains a number of pitfalls that scientists need to avoid to ensure that valid limits are established. For example, in the hazard identification step there has been little discrimination among animal carcinogens with respect to mechanism of action or the epidemiology experience. In the dose-response portion, rarely is the range of "plausible" estimated risks presented. Physiologically based pharmacokinetic (PB-PK) models should be used to understand the difference between the tissue doses and the administered dose, as well as the difference in target tissue concentrations of the toxicant between rodents and humans. Biologically-based models like the Moolgavkar-Knudson-Venzon (MKV) should be developed and used, when appropriate. The exposure assessment step can be significantly improved by using more sensitive and specific sampling and analytical methods, more accurate exposure parameters, and computer models that can account for complex environmental factors. Whenever possible, model predictions of exposure and uptake should be validated by biological monitoring of exposed persons (urine, blood, adipose) or by field measurements of plants, soil, fish, air, or water. In each portion of an assessment, the weight of evidence approach should be used to identify the most defensible value. In the risk characterization, the best estimate of the potential risk as well as the highest plausible risk should be presented. Future assessments would be much improved if quantitative uncertainty analyses were conducted. Procedures are currently available for making future assessments. By correcting some of these shortcomings in how health risk assessments have been conducted, scientists and risk managers should be better able to identify scientifically appropriate ambient air standards and emission limits.  相似文献   

18.
Keskinen M 《Ambio》2008,37(3):193-198
The Mekong River Basin is facing rapid changes, including intensive plans for water development. While the different development projects are considered to be important for economic development, the negative impacts that they are likely to cause for ecosystems and livelihoods are estimated to be remarkable. Yet, existing impact assessment processes seem in many cases to be inadequate to capture even the actual magnitude of the impacts at different levels. This article looks at the different impact assessment processes and their challenges in the basin. It is argued that impact assessment in this kind of dynamic and complex setting requires better coordination between assessments at different levels. Basinwide impact assessment would benefit from a more adaptive, multilevel approach that makes better use of assessments from local levels up to the regional level and builds on more participatory and interdisciplinary methods. Successful impact assessment also requires the recognition of the highly political nature of water development and related planning processes.  相似文献   

19.
A number of empirical (statistical, regression oriented) and mechanistic (process oriented) models are presently available to examine the relationship between air pollution stress and plant response. These models have their strengths and weaknesses. In all these models, a major concern is the numerical definition of the pollutant exposure kinetics (dose). At present there are no numerical definitions of dose which make satisfactory biological sense. A key issue is the existence of a biological time clock where plants respond differently to the pollutant stress at different stages of their growth. On the other hand, policy makers and regulatory personnel prefer a simple approach which would facilitate implementation and administration of ambient air quality standards. Long-term air pollutant averaging techniques create artifacts due to the non-normal distribution of ambient concentrations. A more appropriate approach may be the use of 'median' and 'percentiles' computed from short duration pollutant concentrations. Such an approach would be free of the influence of the non-normal distribution, but would require the development of appropriate exposure-response models. Any transfer of results from unit level models to regional level leads to 'scaling error'. There is no general agreement among researchers on how to deal with the scale problem. While this situation persists, any policy formulated on regional impact assessment must acknowledge the uncertainty.  相似文献   

20.
Heinzl H  Mittlböck M  Edler L 《Chemosphere》2007,67(9):S365-S374
When estimating human health risks from exposure to TCDD using toxicokinetic and toxicodynamic models, it is important to understand how model choice and assumptions necessary for modeling add to the uncertainty of risk estimates. Several toxicokinetic models have been proposed for the risk assessment of dioxins, in particular the elimination kinetics in humans has been a matter of constant debate. For a long time, a simple linear elimination kinetics has been common choice. Thus, it was used for the statistical analysis of the largest occupationally exposed cohort, the German Boehringer cohort. We challenge this assumption by considering, amongst others, a nonlinear modified Michaelis-Menten-type elimination kinetics, the so-called Carrier kinetics. Using the area under the lipid TCDD concentration time curve as dose metrics, we model the time to cancer-related death using the Cox proportional hazards model as toxicodynamic model. This risk assessment set-up was simulated in order to quantify uncertainty of both the dose (TCDD body burden) and the risk estimates, depending on the use of the kinetic model, variations of carcinogenic effect of TCDD and variations of latency period (lag time). If past exposure is estimated assuming a linear elimination kinetics although a Carrier kinetics actually holds, then high exposures in reality will be underestimated through statistical analysis and low exposures will be overestimated, respectively. This bias will carry over on the estimated individual concentration-time curves and the therefrom derived TCDD dose metric values. Using biased dose values when estimating a dose-response relationship will finally lead to biased risk estimates. The extent of bias and the decrease of precision are quantified in selected scenarios through this simulation approach. Our findings are in concordance with recent results in the field of dioxin risk assessment. They also reinforce the general demand for the scheduled uncertainty assessments in risk analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号