首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testfilter systems help in the study of the persistence of organic compounds. Hence, they are remedial measures to control pollution of the environment. The filters used as biological fixed-bed reactors should enable the simulation of the biological degradation of organic compounds before they reach the waterworks. The German chemical industry has used filters based on activated carbon for more than 20 years in order to determine the microbial poorly degradable fraction of the dissolved organic carbon in the sewage effluents. The testfilter systems proved to work well on the basis of group and ‘sum’ parameters. The new challenge was to investigate whether the testfilter concept holds also for a diversification of drinking water relevant and non-relevant single compounds. Therefore, the first task was to develop analytical methods for classes of drinking water relevant compounds in the very complex matrix of waste water. Thereafter, these methods were applied for the detection of the selected compounds in the testfilter systems and their occurrence in the receiving waters. Methods of analysis were developed for the following classes of chemical compounds: aliphatic amines, aromatic sulfonates, halogenated carboxylic acids and organic phosphates. Furthermore the formation of yet unknown drinking water relevant compounds was studied. As a result it was concluded that the major reasons for the formation of these compounds are: (1) formation of by-products during various steps in the chemical synthesis; (2) chemical reactions in the influents of the treatment plants; and (3) metabolism in the waste water treatment plant. Experiments with compounds like 6-[methyl(phenylsulfonyl)amino]hexanoic acid (HPS) and nitrilotriacetic acid (NTA) which are known from the literature to be well degradable, confirmed that the testfilters can be utilized for simulating the performance of the underground passage. On the other hand, persistent compounds, for which 1,5-naphthalenedisulfonate is a characteristic representative, remained in the filter system without being degraded. As far as the testfilters are concerned it was concluded that the activated carbon retains its adsorption capacity to a certain extent even after a long time of operation. Because it is not possible to distinguish between microbial degradation and adsorption, it was necessary to develop a modified filter set-up for testing single substances. ©  相似文献   

2.
Composting was applied as a bioremediation methodology for the reclamation of dredged sediments of Isnapur, Khazipally and Gandigudem lakes polluted with industrial wastes. The present study is an attempt to elaborate upon organic matter transformations and define the parameters for product maturity adapting chemical and spectroscopic methods during composting. The stability and maturity of sediments were evaluated by assessing parameters like C/N ratio, nitrification index (NH(4)-N/NO(3)-N), water-soluble organic carbon concentration, CO(2) evolution rate, cation exchange capacity and indices such as humification index, E4/E6 ratio, compost mineralization index (ash content/oxidizable carbon), germination index, dehydrogenase, polyphenoloxidase activities and FTIR spectroscopy. The results showed that the changes in the above chemical and biological parameters can be employed as reliable indicators of stability and maturity. The FTIR spectra revealed enrichment in the aromatic groups and a degradation of the aliphatic groups indicating stabilization of the final compost.  相似文献   

3.
Microbial degradation of selected odorous substances   总被引:11,自引:0,他引:11  
A biological odor treatment system has several advantages compared to conventional physical and chemical treatment technologies: (1) it is highly efficient in the treatment of waste gases characterized by high flow rates and low concentrations of contaminants; (2) the biodegradable pollutants are completely destroyed; and (3) it has low cost [Devinny, J.S., Deshusses, M.A., Webster, T.S., 1999. Biofiltration for Air Pollution Control. Lewis Publisher, New York, USA; Kennes, C., Veiga, M.C., 2001. Bioreactors for waste gas treatment. Kluwer Academic Publishers, London]. Because microorganisms play the major role in the successful biological odor treatment system, the understanding of microbial degradation of the key odorants is very important. This article describes the occurrence and the characteristics of selected key odorous compounds such as sulphides, amines, and pyrazine compounds. The article reviews available information in the literature and our experimental results of microbial degradation of the selected compounds. This is the first article that presents the isolation and characterization of bacterial strains that can utilize dimethyl trisulfide (DMTS), triethylamine (TEA) or different pyrazines, as a sole carbon and energy source. The biological degradation pathways of some of these compounds are postulated. Moreover, the influence of the presence of other odorous compounds in the culture medium on the degradation of the target odorous compounds by the isolated bacteria is presented. The information presented in the paper can be used to develop new systems for biological odor treatment.  相似文献   

4.
An anaerobic reaction model is represented and used for simulation of the biodegradation of organic compounds and the generation of biogas. The model is based on fundamental relationships among physical, chemical, thermodynamic and microbial processes occurring in municipal landfills. Local microbially mediated degradation processes occurring in municipal landfills are simulated in terms of hydrolysis of readily and inherently degradable organic matter, the formation of acetate as surrogate for intermediary low-molecular carbon substrates, and the generation of the biogases CH4 and CO2. Thus, the overall decomposition of the organic matter has been assumed to follow three sequential anaerobic reactions steps: hydrolysis, acetogenesis and methanogenesis. In order to study the impact of environmental factors on the biological decomposition processes, experiments have been conducted to investigate the effect of temperature and water content. In the degradation model, the impact of temperature and water content was defined as reaction rate influencing factors. Further, waste samples have been taken from four drill holes on a municipal landfill near Wolfsburg (Germany) and used to analyze and to describe the waste composition and prevailing environmental conditions dependent on the depth of the drill hole. The data and waste samples obtained from the landfill have also been used for model development and validation.  相似文献   

5.
Water deficit and soil degradation have become some of the major problems for crop production in semi-arid regions, as it is the South East of Spain. As a matter of fact, considerable productivity loss and risk of erosion have to be taken into account in these areas, especially those with an horticultural use (Davis, 1989). Utilization of sewage sludge in agriculture. Agricultural Progress 64, 72-80]. Horticultural soils are highly vulnerable and prone to erosion, as vegetables are generally fast-growing species under intensive exploitation regimes. High-rate chemical inputs contribute to horticultural soil degradation and have a dramatic effect on soil microbial population and nutrient balance whilst, at the same time, have a counter-effect on price competitiveness of the vegetables to be commercialized. In this paper we monitored variations in physical, chemical and biological properties of a cauliflower plot where four increasing quantities of compost were applied. We carried out a three-stage sampling schedule in order to check the effect of compost applications doses. We conclude that a 2 kg compost/m2 application had a positive effect on physical and biological properties of the soil and provides a supply of nutrients to grow cauliflowers on its surface under intensive exploitation regimes without loss in biomass yield.  相似文献   

6.
Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a “green” surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured.Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.  相似文献   

7.
This article presents a methodology to calculate the social cost of sustainability metrics with environmental footprint evaluation tools. Measuring the impacts of a remediation project on society is challenging because the methods by which these impacts can be measured have not been established. To perform a complete sustainability assessment of a project's life cycle, costs borne by society in terms of environmental, economic, and community impacts must be evaluated. Two knowledge gaps have been identified among the sustainability assessments currently being performed during a remediation project's life cycle: (1) lack of methodologies available to evaluate impacts on the socioeconomic aspects of remediation and (2) lack of sustainability assessments conducted during the site characterization stage. Sustainability assessments were conducted on two case studies using the methodology proposed in this article: one during the site characterization stage and the other during remedial action. The results of this study demonstrated that costs borne by society from a remediation project are significant and metric specific. This study also highlighted the benefits of conducting a sustainability assessment at the site characterization stage using environmental footprint analysis tools, cost benefit analysis, and an evaluation of costs borne by society. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
The presence of an organic mat in a hydrocarbon‐impacted creek in Whitehorse, Yukon Territory, Canada was examined for contributions to in situ remediation of petroleum‐contaminated water. This article investigates the role of algae, found in the organic mat, in the remediation of light extractable petroleum hydrocarbons (LEPHs) at the site and in the laboratory. During the study, LEPH concentrations were reduced by 16.8 percent in the presence of algae alone (algal solution) and 30.4 percent in the combined organic mat solution containing microbial consortia. The study results indicate that algal species at the site did not directly phytoremediate hydrocarbons. Rather, they were part of the total biological degradation taking place. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
Dredging operations are necessary to maintain harbour activities, to prevent floods, and to restore ecosystem. These sediments after dredging are considered as waste, and their management is a complex problem. In the context of sustainable development, traditional solutions, such as dumping, will be more and more regulated. More than ever with the shortage of aggregates from quarries, dredged sediment could constitute a new granular material source for Civil Engineering domain. The principal objective of this works is to use dredged river sediments in the road construction. This study consists to determine the physical–chemical, geotechnical, and environmental impact characteristics of raw river sediments. To improve the mechanical performance of this river material be used in road construction, a treatment by the hydraulic binder in combination with granular corrector has been proposed. The impacts of the treated material on the environment have been evaluated. The last part of this study focuses on the realization of an experimental road with the designed mixes in the laboratory. The validation of mechanical characteristics and the study of the environmental impacts have been made on core samples from the experimental road. The monitoring of the quality of the percolating water and runoff water has been explored. The obtained results in laboratory and in situ are promising for potential use of river sediments in foundation layer of the road construction.  相似文献   

10.
As one of a series of studies concerning the relationship between the higher-order structure and the biodegradability of a biodegradable plastic, the effects of the crystal structure of the plastic on microbial degradation were investigated. Bacterial poly(d-(–)-3-hydroxybutyrate) (PHB) films which had a wide range of crystallinity were prepared by the melt-quenching method. Results of the microbial degradation indicated that the development of crystallinity evidently depressed the microbial degradability. From scanning electron microscopy (SEM) observations, it is suggested that the microbial degradation proceeded in at least two manners. One was preferential degradation of the amorphous region leaving the crystalline lamellae intact, which was considered to be a homogeneous enzymatic degradation over the surface. The other was nonpreferential spherical degradation on the surface. The SEMs indicate that the spherical holes were the result of colonization by degrading bacteria. The holes varied in size and number with the change of crystal structure. Therefore, it is considered that the crystal structure of PHB also influenced the physiological behavior of the degrading bacteria on the PHB surface.  相似文献   

11.
Electrical resistance heating (ERH) is proving to be an effective technology to rapidly heat the subsurface and, in doing so, removing volatile organic compounds. Practitioners of this technology have observed that other processes (biodegradation, abiotic degradation, hydrolysis, and possibly others) occur to break down the chemicals of concern, and remediation is not solely accomplished through vaporization. Few sites treated using ERH have been monitored during and after treatment to identify and evaluate the processes occurring and assess the contribution of these other biological and chemical processes in the remediation effort so that they may be incorporated in the remediation design. At Fort Lewis, Washington, a landfill has been undergoing ERH treatment in three phases, where chlorinated volatile organic compounds represent the primary chemicals of concern in soil and groundwater. Other chemicals of concern include petroleum products, oils, and lubricants. The Fort Lewis remediation projects provided an opportunity to observe the reactions occurring in the subsurface during ERH and fine‐tune the study with each phase of operation. This study is still under way. However, the data gathered to date, which focuses on biodegradation, provides insights into the processes that have been observed. For the Fort Lewis site, biotic and abiotic degradation processes have been observed throughout the range of operating temperatures. At the lower temperature ranges (up to 70°C), biological processes appear to predominate. Above 70°C, abiotic processes become much more active. The goal of this work is to eventually optimize the use of these intrinsic processes in ERH remediation to reduce energy requirements and costs. © 2007 Wiley Periodicals, Inc.  相似文献   

12.
Degradation of Cellulose Acetate-Based Materials: A Review   总被引:1,自引:0,他引:1  
Cellulose acetate polymer is used to make a variety of consumer products including textiles, plastic films, and cigarette filters. A review of degradation mechanisms, and the possible approaches to diminish the environmental persistence of these materials, will clarify the current and potential degradation rates of these products after disposal. Various studies have been conducted on the biodegradability of cellulose acetate, but no review has been compiled which includes biological, chemical, and photo chemical degradation mechanisms. Cellulose acetate is prepared by acetylating cellulose, the most abundant natural polymer. Cellulose is readily biodegraded by organisms that utilize cellulase enzymes, but due to the additional acetyl groups cellulose acetate requires the presence of esterases for the first step in biodegradation. Once partial deacetylation has been accomplished either by enzymes, or by partial chemical hydrolysis, the polymer’s cellulose backbone is readily biodegraded. Cellulose acetate is photo chemically degraded by UV wavelengths shorter than 280 nm, but has limited photo degradability in sunlight due to the lack of chromophores for absorbing ultraviolet light. Photo degradability can be significantly enhanced by the addition of titanium dioxide, which is used as a whitening agent in many consumer products. Photo degradation with TiO2 causes surface pitting, thus increasing a material’s surface area which enhances biodegradation. The combination of both photo and biodegradation allows a synergy that enhances the overall degradation rate. The physical design of a consumer product can also facilitate enhanced degradation rate, since rates are highly influenced by the exposure to environmental conditions. The patent literature contains an abundance of ideas for designing consumer products that are less persistent in the outdoors environment, and this review will include insights into enhanced degradability designs.  相似文献   

13.
The miscibility of cellulose acetate (CA; degree of substitution = 2.5) and poly(ethylene succinate) (PES) has been investigated using a variety of thermal techniques and by solid-state carbon13 NMR spectroscopy. The blends containing greater than ca. 70% CA were found to be miscible. In the case of blends containing less than ca. 70% CA, a combination of thermal and NMR analyses suggests that these blends are not fully miscible on a 2.5- to 5-nm scale. On the scale which can be probed by dynamic mechanical thermal analysis (15 nm), the low-percentage CA blends exhibit “significant local concentration fluctuations≓. Investigation of the biodegradation of the blend components and of the blends revealed that PES degraded relatively rapidly and that CA degraded slowly. The blends degraded at a rate essentially identical to that of CA. Miscibility (75% CA blend) or crystallization of PES (30% CA blend) had no significant effect. These data suggest that a significant mode of degradation ófPES during composting involves chemical hydrolysis of the polymer followed by biological assimilation of monomers. Degradation of the blends is initiated in the amorphous phase. Because CA is a significant component of the amorphous phase, a small amount of CA significantly impacts the biodegradation rates of the blends.  相似文献   

14.
A landfill is a very complex heterogeneous environment and as such it presents many modelling challenges. Attempts to develop models that reproduce these complexities generally involve the use of large numbers of spatially dependent parameters that cannot be properly characterised in the face of data uncertainty. An alternative method is presented, which couples a simplified microbial degradation model with a stochastic hydrological and contaminant transport model. This provides a framework for incorporating the complex effects of spatial heterogeneity within the landfill in a simplified manner, along with other key variables. A methodology for handling data uncertainty is also integrated into the model structure. Illustrative examples of the model's output are presented to demonstrate effects of data uncertainty on leachate composition and gas volume prediction.  相似文献   

15.
Remediating environmental contamination by either biological or chemical methods typically results in the generation of temporary chemical intermediates as part of the process. These intermediate compounds may be related to either contaminant degradation pathways or reactions generated from the amendment itself. This article summarizes previously researched pathways and representative case studies discussing the authors' experience in generating relatively high concentrations of acetone and 2‐butanone (also referred to as methyl ethyl ketone [MEK]) during both biological and chemical treatments. Experience shows that even relatively high concentrations of acetone and MEK intermediates are quickly attenuated and prove not to be a hazard outside of the treatment area. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
This paper reports on a study the degradation of a highly aged hydrocarbon mixture originating from an accidental spill in an oil refinery. The biological activator BIOLEN IG 30 has been used as degradation agent microorganism and INIPOL EAP 22 as biodegradation process accelerator. The kinetic coefficients have been deduced by adjusting the two straight lines from a plot of the degradation process using zero-order kinetics. An aged hydrocarbon mixture dispersion was studied and efficiency ratios calculated. Degradation of the FINASOL OSR 51 dispersant used to disperse the hydrocarbon mixture has been also studied yielding the degradation process constant, biological oxygen demand (BOD), biological final demand (BODf), stabilization constant for the degradation process (k1) and the biological stabilization constant (k).  相似文献   

17.
The US Environmental Protection Agency’s National Center for Environmental Assessment is finalizing its updated approach to assessing the health risks from direct and indirect exposure to combustion emissions. The prior 1990 Indirect Exposure Methodology has been used frequently in the early part of this decade, while the new methodology considers more pathways for agent transfer and exposure. This advanced methodology is not limited to exposure from combustion emissions as the approach lends itself to assessing indirect exposure to other agents in various exposure scenarios. The purpose of this presentation is to alert the user community to the new methodology and discuss its impacts on risk assessment. A brief overview of the exposure pathways, along with the inherent uncertainties of the MPE and the risk characterization, are presented. Other associated documentation is presented and referenced. The paper concludes with a discussion of the planned implementation of the MPE and the Agency program guidance for use with RCRA combustor permitting and risk assessments.  相似文献   

18.
Bioassessment is a useful tool to determine the impact of logging practices on the biological integrity of streams and wetlands. Measuring biota directly has an intuitive appeal for impact assessment, and biota can be superior indicators to physical or chemical characteristics because they can reflect cumulative impacts over time. Logging can affect stream and wetland biota by increasing sedimentation rates, altering hydrologic, thermal, and chemical regimes, and changing the base of food webs. Biotic impacts of logging on streams compared to wetlands probably differ, and in this paper we review some of those differences. In streams, invertebrates, fishes, amphibians, algae, and macrophytes have been used as indicators of logging impacts. In wetlands, bioassessment is just beginning to be used, and plants and birds are the most promising indicator taxa. Various best management practices (BMPs) have been developed to reduce the impacts of logging on stream and wetland biota, and we review quantitative studies that have evaluated the efficacy of some of these techniques in streams and wetlands in the eastern United States. Remarkably few studies that address the overall efficacy of BMPs in limiting biotic changes in streams and wetlands after BMP implementation have been published in scientific journals, although some work exists in reports or is unpublished. We review these works, and compile conclusions about BMP efficacy for biota from this body of research.  相似文献   

19.
Landfills have been the dominant alternative for disposal of solid waste and there are tens of thousands of closed landfills throughout the world that require a long-term management strategy. In contrast to approaches based on time or target values, this paper describes a performance-based methodology for evaluation of post-closure care (PCC). Using the methodology, critical components of PCC at a landfill, including leachate and gas management, groundwater monitoring and cover integrity, are considered to determine whether a landfill meets defined conditions for functional stability and can transition from regulated PCC to a post-regulatory custodial care program representing de minimus care activities only. The methodology is predicated on understanding the biological, chemical, and physical behavior of a landfill and the presence of sufficient data to verify expected trends in landfill behavior. If an evaluation suggests that a change can be made to PCC, the landfill owner must perform confirmation monitoring and then surveillance monitoring at a decreasing frequency to verify that the change is protective of human health and the environment. A hypothetical case study showed that using the methodology to evaluate site-specific PCC requirements could result in increased environmental protection at comparable cost by spending available funds where they are most needed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号