首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Spatial and Seasonal Patterns of Bird Communities in Italian Agroecosystems   总被引:2,自引:0,他引:2  
Abstract:  Despite agricultural landscapes covering almost 60% of the total land area of Italy, knowledge of the effects of agriculture and its intensification on bird communities is still scarce. I analyzed the effects of land uses on bird diversity and community structure in different farmland habitats of lowland northwestern Italy. I surveyed breeding and overwintering birds with a hierarchically nested sampling design and used generalized linear and mixed models to investigate the relationships between the diversity and abundance of birds and habitat or landscapes attributes. The effects of agriculture on α avian diversity varied with season and spatial scale, whereas nonagricultural habitats (long-term fallows or woodlands) had a generally positive effect that was constant throughout time and space. As the amount of woodland habitat increased, spatial turnover (β diversity) of breeding birds decreased. Arable landscapes supported low levels of avian diversity throughout the year but were favored by emblematic farmland birds that have declined severely in Europe and in the study area. Farmland birds (40% of which are experiencing population declines) were more abundant or foraged more frequently in the less-disturbed habitat types such as fallows, grasslands, and winter stubbles and tended to avoid the prevailing cultivations (maize, vineyard, and wheat). Landscape simplification, the expansion of maize cultivation, winter plowing practices, and the conversion of highly diverse grasslands to tilled lands are likely to be responsible for the local decline of most farmland species (Skylark [Alauda arvensis ], Starling [Sturnus vulgaris ], buntings [Emberiza spp.], and wagtails [Motacilla spp.]) and for the increase of birds that are turning into agricultural pests (Hooded Crow [Corvus corone cornix ]).  相似文献   

2.
Abstract:  Although species with large area requirements are sometimes used as umbrella species, their general utility as conservation tools is uncertain. We surveyed the species diversity of birds, butterflies, carabids, and forest-floor plants in forest sites across an area (1600 km2) in which we delineated large breeding home ranges of Northern Goshawk ( Accipiter gentilis ). We tested whether protection of the home ranges could serve as an effective umbrella to protect sympatric species of the four taxa. We also used an empirical habitat model of occupancy of home range to examine mechanisms by which the Northern Goshawk acts as an umbrella species. Among species richness, abundance, and species composition of the four taxa, only abundance and species composition of birds differed between sites located inside and outside home ranges, which was due to greater abundance of bird species that were prey of Northern Goshawks inside the home ranges. Thus, although home range indicated areas with high abundance of certain bird prey species, it was not effective as an indicator of the species diversity of all four taxa. We also did not find any difference in species richness, abundance, and species composition between sites predicted as occupied and unoccupied using the habitat model. In contrast, when we selected sites on the basis of each habitat variable in the model, habitat variables that selected sites either in agricultural or forested landscapes encompassed sites with high species richness or particular species composition. This result suggests that the low performance of the Northern Goshawk as an umbrella species is due to this species' preference for habitat in both agricultural and forested landscapes. Species that can adjust to changes in habitat conditions may not act as effective umbrella species despite having large home ranges.  相似文献   

3.
In this paper, we analyzeatabases on birds and insects to assess patterns of functional diversity in human-dominated landscapes in the tropics. A perspective from developed landscapes is essential for understanding remnant natural ecosystems, because most species experience their surroundings at spatial scales beyond the plot level, and spillover between natural and managed ecosystems is common. Agricultural bird species have greater habitat and diet breadth than forest species. Based on a global data base, bird assemblages in tropical agroforest ecosystems were composed of disproportionately more frugivorous and nectarivorous, but fewer insectivorous bird species compared with forest. Similarly, insect predators of plant-feeding arthropods were more diverse in Ecuadorian agroforest and forest compared with rice and pasture, while, in Indonesia, bee diversity was also higher in forested habitats. Hence, diversity of insectivorous birds and insect predators as well as bee pollinators declined with agricultural transformation. In contrast, with increasing agricultural intensification, avian pollinators and seed dispersers initially increase then decrease in proportion. It is well established that the proximity of agricultural habitats to forests has a strong influence on the functional diversity of agroecosystems. Community similarity is higher among agricultural systems than in natural habitats and higher in simple than in complex landscapes for both birds and insects, so natural communities, low-intensity agriculture, and heterogeneous landscapes appear to be critical in the preservation of beta diversity. We require a better understanding of the relative role of landscape composition and the spatial configuration of landscape elements in affecting spillover of functionally important species across managed and natural habitats. This is important for data-based management of tropical human-dominated landscapes sustaining the capacity of communities to reorganize after disturbance and to ensure ecological functioning.  相似文献   

4.
Farmland diversification practices (i.e., methods used to produce food sustainably by enhancing biodiversity in cropping systems) are sometimes considered beneficial to both agriculture and biodiversity, but most studies of these practices rely on species richness, diversity, or abundance as a proxy for habitat quality. Biodiversity assessments may miss early clues that populations are imperiled when species presence does not imply persistence. Physiological stress indicators may help identify low-quality habitats before population declines occur. We explored how avian stress indicators respond to on-farm management practices and surrounding seminatural area (1-km radius) across 21 California strawberry farms. We examined whether commonly used biodiversity metrics correlate with stress responses in wild birds. We used ∼1000 blood and feather samples and body mass and wing chord measurements, mostly from passerines, to test the effects of diversification practices on four physiological stress indicators: heterophil to lymphocyte ratios (H:L), body condition, hematocrit values, and feather growth rates of individual birds. We then tested the relationship between physiological stress indicators and species richness, abundance, occurrence, and diversity derived from 285 bird point count surveys. After accounting for other biological drivers, landscape context mediated the effect of local farm management on H:L and body condition. Local diversification practices were associated with reduced individual stress in intensive agricultural landscapes but increased it in landscapes surrounded by relatively more seminatural area. Feathers grew more slowly in landscapes dominated by strawberry production, suggesting that nutritional condition was lower here than in landscapes with more crop types and seminatural areas. We found scant evidence that species richness, abundance, occurrence, or diversity metrics were correlated with the individual's physiological stress, suggesting that reliance on these metrics may obscure the impacts of management on species persistence. Our findings underscore the importance of considering landscape context when designing local management strategies to promote wildlife conservation.  相似文献   

5.
Riparian forests are important for maintaining vertebrate species richness in the southwestern United States, but they have become restricted in distribution due to both historical and current management practices. In order to counteract continued loss of this habitat, several mitigation programs were developed in the middle Rio Grande Valley of New Mexico. Three areas ranging from 50 to 140 ha were revegetated with native trees using pole planting and cattle exclosures, and changes in vegetation structure were quantified after 2, 3, and 5 years of growth. As expected, the older site contained the most heterogeneous mix of plant species and the greatest structural diversity. We compared year-round avian use of the revegetated sites with a mature cottonwood forest site of approximately 30 years of age. As the revegetated sites matured and salient habitat features changed, the population dynamics of individual avian species and patterns of guild structure varied. The older revegetated sites showed a greater similarity to the mature cottonwood site, suggesting that reclamation efforts established quality riparian habitats for birds in as little as 5 years. The revegetated sites appeared especially important for Neotropical-migrant birds. We suggest that a mosaic of riparian woodlands containing mixtures of native tree and shrub species of different size classes is necessary to maintain avian species richness in the middle Rio Grande drainage, and probably throughout the southwestern United States.  相似文献   

6.
Abstract: Coffee farms can support significant biodiversity, yet intensification of farming practices is degrading agricultural habitats and compromising ecosystem services such as biological pest control. The coffee berry borer (Hypothenemus hampei) is the world's primary coffee pest. Researchers have demonstrated that birds reduce insect abundance on coffee farms but have not documented avian control of the berry borer or quantified avian benefits to crop yield or farm income. We conducted a bird‐exclosure experiment on coffee farms in the Blue Mountains, Jamaica, to measure avian pest control of berry borers, identify potential predator species, associate predator abundance and borer reductions with vegetation complexity, and quantify resulting increases in coffee yield. Coffee plants excluded from foraging birds had significantly higher borer infestation, more borer broods, and greater berry damage than control plants. We identified 17 potential predator species (73% were wintering Neotropical migrants), and 3 primary species composed 67% of migrant detections. Average relative bird abundance and diversity and relative resident predator abundance increased with greater shade‐tree cover. Although migrant predators overall did not respond to vegetation complexity variables, the 3 primary species increased with proximity to noncoffee habitat patches. Lower infestation on control plants was correlated with higher total bird abundance, but not with predator abundance or vegetation complexity. Infestation of fruit was 1–14% lower on control plants, resulting in a greater quantity of saleable fruits that had a market value of US$44–$105/ha in 2005/2006. Landscape heterogeneity in this region may allow mobile predators to provide pest control broadly, despite localized farming intensities. These results provide the first evidence that birds control coffee berry borers and thus increase coffee yield and farm income, a potentially important conservation incentive for producers.  相似文献   

7.
Many studies have examined differences in avian community composition between urban and rural habitats, but few, if any, have looked at nesting success of urban shrubland birds in a replicated fashion while controlling for habitat. We tested factors affecting nest survival, parasitism by the Brown-headed Cowbird (Molothrus ater), and species abundance in shrubland habitat in rural and urban landscapes. We found no support for our hypothesis that nest survival was lower in urban landscapes, but strong support for the hypothesis that survival increased with nest height. We found strong support for our hypothesis that cowbird parasitism was greater in urban than rural landscapes; parasitism in urban sites was at least twice that of rural sites. We found strong support for an urban landscape effect on abundance for several species; Northern Cardinal (Cardinalis cardinalis) and Brown-headed Cowbirds were more abundant in urban landscapes, whereas Field Sparrow (Spizella pusilla) and Blue-winged Warbler (Vermivora pinus) were more abundant in rural sites. There was support for lower abundances of Blue-gray Gnatcatcher (Polioptila caerulea) and Indigo Bunting (Passerina cyanea) with increased housing density. For six other species, edge and trail density or vegetation parameters best explained abundance. Lower abundances and greater parasitism in habitat patches in urban landscapes are evidence that, for some species, these urban landscapes do not fulfill the same role as comparable habitats in rural landscapes. Regional bird conservation planning and local habitat management in urban landscapes may need to consider these effects in efforts to sustain bird populations at regional and local scales.  相似文献   

8.
Gap Crossing Decisions by Forest Songbirds during the Post-Fledging Period   总被引:10,自引:0,他引:10  
Gaps in forest cover, created by agriculture, forestry, and other anthropogenic activities, are assumed to impede the movements of many forest songbirds. Little is known, however, about the reluctance of different species of birds to cross habitat gaps. We studied this by inducing birds in the post-fledging period to cross gaps of varying widths and to choose between routes through woodland or across open areas by attracting them to a recording of mobbing calls by Chickadees (  Parus atricapillus). In 278 experiments conducted in boreal forest and agricultural landscapes near Québec city, 157 birds or flocks of birds of five species were attracted. Overall, birds were twice as likely to travel through 50 m of woodland than through 50 m in the open to reach the recording. When given a choice of traveling through woodland or across a gap, the majority of respondents preferred woodland routes, even when they were three times longer than shortcuts in the open. However, species differed greatly in their response to gaps. Our results show that woodland links significantly facilitate movements of birds across fragmented landscapes.  相似文献   

9.
Abstract: Little attention has been paid to fragmentation effects on organisms living in open habitats in which species may have high mobility and generalized habitat use. We investigated landscape effects on 23 farmland bird species breeding in 72 semi-natural dry pastures distributed equally among three landscape types (agricultural-dominated, mosaic, and forest-dominated) in southcentral Sweden. There were generally higher local abundances of farmland birds in pastures located in agricultural-dominated and mosaic landscapes than in forest-dominated landscapes. Species feeding on a mixed diet as well as resident species and temperate migrants were most numerous in pastures located in agricultural-dominated landscapes and least numerous in forest-dominated landscapes. While controlling for the effects of local pasture area and vegetation structure, we found that the local abundance of 18 ( 78%) farmland bird species was significantly associated with the composition and structure of the surrounding landscape. The landscape distance that explained the largest part of local variation in abundance varied among species according to the size of their breeding territories or foraging home ranges. Our results suggest that habitat use of farmland birds breeding in pastures is affected both by suitable foraging habitats in the surrounding landscape and by nest sites within local pastures. Despite the generally higher abundances of farmland birds in pastures located in agricultural-dominated landscapes, most species of European and Swedish conservation concern had higher abundance in pastures located in more forested landscapes. Thus, the rapid loss of semi-natural dry pastures in forest-dominated landscapes is a serious threat to the future of these species in Sweden.  相似文献   

10.
Abstract:  As tropical forests are cleared, a greater proportion of migratory songbirds are forced to winter in agricultural and disturbed habitats, which, if poorer in quality than natural forests, could contribute to population declines. We compared demographic indicators of habitat quality for a focal species, the American Redstart ( Setophaga ruticilla ), wintering in Jamaican citrus orchards and shade coffee plantations with those in four natural habitats: mangrove, coastal scrub, coastal palm, and dry limestone forests. Demographic measures of habitat quality included density, age and sex ratio, apparent survival, and changes in body mass. Measures of habitat quality for redstarts in citrus and coffee habitats were generally intermediate between the highest (mangrove) and lowest (dry limestone) measurements from natural habitats. The decline in mean body mass over the winter period was a strong predictor of annual survival rate among habitats, and we suggest that measures of body condition coupled with survival data provide the best measures of habitat quality for nonbreeding songbirds. Density, which is far easier to estimate, was correlated with these more labor-intensive measures, particularly in the late winter when food is likely most limiting. Thus, local density may be useful as an approximation of habitat quality for wintering migrant warblers. Our findings bolster those of previous studies based on bird abundance that suggest arboreal agricultural habitats in the tropics can be useful for the conservation of generalist, insectivorous birds, including many migratory passerines such as redstarts.  相似文献   

11.
Scale Perspectives on Avian Diversity in Western Riparian Ecosystems   总被引:5,自引:0,他引:5  
Conservation of riparian vegetation in western North America has, in part, emphasized providing habitats for a locally diverse avifauna. Site diversity, especially relative to the number of species present, is generally high within riparian avifaunas. Between-habitat diversity changes across a watershed, with riparian species assemblages differing most from upland assemblages at the highest and lowest elevations. This pattern can be attributed to enhanced avian movements within the riparian vegetation. The corridors for bird movements, in turn, facilitate faunal mixing on a broader scale, influencing regional diversity within landscapes. Riparian ecosystems are viewed as connectors of forests across fragmented landscapes. In western settings, however, they are highly linearized forests transecting watersheds between upland associations of high elevations and very different associations at lower elevations. Regionally, riparian vegetation represents linear islands that are internally both floristically and faunistically dynamic rather than mere bridges of homogeneous vegetation in landscape networks. The significance of riparian vegetation as habitat for western birds has been defined primarily at the local level. Conservation activities favoring site diversity are short-sighted, however, and could have severe consequences for unique elements of riparian avifaunas. Conservation actions must evaluate how local activities alter potential dispersal opportunities for ecological-generalist versus riparian-obligate species. Maintaining the character and integrity of riparian avifaunas requires planning from regional and continental perspectives.  相似文献   

12.
As tropical regions are converted to agriculture, conservation of biodiversity will depend not only on the maintenance of protected forest areas, but also on the scope for conservation within the agricultural matrix in which they are embedded. Tree cover typically retained in agricultural landscapes in the neotropics may provide resources and habitats for animals, but little is known about the extent to which it contributes to conservation of animal species. Here, we explore the animal diversity associated with different forms of tree cover for birds, bats, butterflies, and dung beetles in a pastoral landscape in Nicaragua. We measured species richness and abundance of these four animal taxa in riparian and secondary forest, forest fallows, live fences, and pastures with high and low tree cover. We recorded over 20,000 individuals of 189 species including 14 endangered bird species. Mean abundance and species richness of birds and bats, but not dung beetles or butterflies, were significantly different among forms of tree cover. Species richness of bats and birds was positively correlated with tree species richness. While the greatest numbers of bird species were associated with riparian and secondary forest, forest fallows, and pastures with >15% tree cover, the greatest numbers of bat species were found in live fences and riparian forest. Species assemblages of all animal taxa were different among tree cover types, so that maintaining a diversity of forms of tree cover led to conservation of more animal species in the landscape as a whole. Overall, the findings indicate that retaining tree cover within agricultural landscapes can help conserve animal diversity, but that conservation efforts need to target forms of tree cover that conserve the taxa that are of interest locally. Preventing the degradation of remaining forest fragments is a priority, but encouraging farmers to maintain tree cover in pastures and along boundaries may also make an important contribution to animal conservation.  相似文献   

13.
Importance of Reserve Size and Landscape Context to Urban Bird Conservation   总被引:15,自引:1,他引:15  
Abstract:  We tested whether reserve size, landscape surrounding the reserve, and their interaction affect forest songbirds in the metropolitan area of Seattle, Washington (U.S.A.), by studying 29 reserves of varying size (small, medium, large) and surrounding urbanization intensity (urban, suburban, exurban). Larger reserves contained richer and less even bird communities than smaller reserves. These size effects disappeared when we removed the positive correlation of shrub diversity with reserve size, suggesting that greater habitat diversity in large reserves supported additional species, some of which were rare. Standardizing the number of individuals detected among all reserve size classes reversed the effect of size on richness in exurban landscapes and reduced the magnitude of the effect in suburban or urban landscapes. The latter change suggested that richness increased with reserve size in most landscapes because larger areas also supported larger samples from the regional bird species pool. Most bird species associated with native forest habitat (native forest species) and with human activity (synanthropic species) were present in reserves larger than 42 ha and surrounded by >40% urban land cover, respectively. Thus, we recommend these thresholds as means for conserving the composition of native bird communities in this mostly forested region. Native forest species were least abundant and synanthropic species most abundant in urban landscapes, where exotic ground and shrub vegetation was most common. Therefore, control of exotic vegetation may benefit native songbird populations. Bird nests in shrubs were most dense in medium (suburban) and large reserves (urban) and tended to be most successful in medium (suburban) and large reserves (exurban), potentially supplying another mechanism by which reserve size increased retention of native forest species.  相似文献   

14.
We examined waterbird assemblages (diversity, composition, and species' densities) in 20 pastures near Humboldt Bay, California, in relation to habitat characteristics (vegetation height, soil penetrability, water depth), abundance of invertebrates (worms and other invertebrates), and presence of livestock. From October 1991 to May 1992 we observed 29 species and 10,776 birds, most (78%) of which foraged. Nonrandom pasture use by birds resulted in a highly clumped spatial distribution (s2:{ovbar>x} ratio = 42.1). Habitat characteristics of pastures correlated with this nonrandom pattern: waterbird diversity and densities of three sandpiper species and one gull species correlated negatively ( r = −0.61 and r = −0.44 to −0.67, respectively) with vegetation height; densities of two plover species correlated negatively ( r = −0.39 and −0.45) with soil penetrability; and waterfowl densities correlated positively with water depth ( r = 0.97). Species composition varied among pastures. Wading birds used pastures with tall vegetation, shorebirds and gulls frequented short-grass pastures, and waterfowl used flooded pastures of waterbirds and their densities increased in association with livestock.In coastal areas where much intertidal habitat has been reclaimed as postureland, pastures offered valuable habitats to nonbreeding waterbirds. We suggest that grazing in coastal pastures can be used to provide a mosaic of vegetation heights, which would yield greater waterbird diversity as well as higher densities of some species.  相似文献   

15.
Intensification of food production in tropical landscapes in the absence of land‐use planning can pose a major threat to biological diversity. Decisions on whether to spatially integrate or segregate lands for production and conservation depend in part on the functional relations between biological diversity and agricultural productivity. We measured diversity, density, and species composition of birds along a gradient of production intensification on an agricultural frontier of the Argentine Chaco, where dry tropical forests are cleared for cattle production. Bird species diversity in intact forests was higher than in any type of cattle‐production system. Bird species richness decreased nonlinearly as cattle yield increased. Intermediate‐intensity silvopastoral systems, those in which forest understory is selectively cleared to grow pastures of non‐native plants beneath the tree canopy, produced 80% of the mean cattle yield obtained in pastures on cleared areas and were occupied by 70–90% of the number of bird species present in the nearest forest fragments. Densities of >50% of bird species were significantly lower in open pastures than in silvopastoral systems. Therefore, intermediate‐intensity silvopastoral systems may have the greatest potential to sustain cattle yield and conserve a large percentage of bird species. However, compared with low‐intensity production systems, in which forest structure and extent were intact, intermediate‐intensity silvopastoral systems supported significantly fewer forest‐restricted bird species and fewer frugivorous birds. These data suggest that the integration of production and conservation through intermediate‐intensity silvopastoral systems combined with the protection of forest fragments may be required to maintain cattle yield, bird diversity, and conservation of forest‐restricted species in this agricultural frontier. Compromisos entre la Producción de Ganado y la Conservación de Aves en una Frontera Agrícola del Gran Chaco de Argentina  相似文献   

16.
Abstract:  Managed landscapes in which non-native ornamental plants are favored over native vegetation now dominate the United States, particularly east of the Mississippi River. We measured how landscaping with native plants affects the avian and lepidopteran communities on 6 pairs of suburban properties in southeastern Pennsylvania. One property in each pair was landscaped entirely with native plants and the other exhibited a more conventional suburban mixture of plants—a native canopy with non-native groundcover and shrubs. Vegetation sampling confirmed that total plant cover and plant diversity did not differ between treatments, but non-native plant cover was greater on the conventional sites and native plant cover was greater on the native sites. Several avian (abundance, species richness, biomass, and breeding-bird abundance) and larval lepidopteran (abundance and species richness) community parameters were measured from June 2006 to August 2006. Native properties supported significantly more caterpillars and caterpillar species and significantly greater bird abundance, diversity, species richness, biomass, and breeding pairs of native species. Of particular importance is that bird species of regional conservation concern were 8 times more abundant and significantly more diverse on native properties. In our study area, native landscaping positively influenced the avian and lepidopteran carrying capacity of suburbia and provided a mechanism for reducing biodiversity losses in human-dominated landscapes.  相似文献   

17.
We report reptile and arboreal marsupial responses to vegetation planting and remnant native vegetation in agricultural landscapes in southeastern Australia. We used a hierarchical survey to select 23 landscapes that varied in the amounts of remnant native vegetation and planted native vegetation. We selected two farms within each landscape. In landscapes with plantings, we selected one farm with and one farm without plantings. We surveyed arboreal marsupials and reptiles on four sites on each farm that encompassed four vegetation types (plantings 7-20 years old, old-growth woodland, naturally occurring seedling regrowth woodland, and coppice [i.e., multistemmed] regrowth woodland). Reptiles and arboreal marsupials were less likely to occur on farms and in landscapes with comparatively large areas of plantings. Such farms and landscapes had less native vegetation, fewer paddock trees, and less woody debris within those areas of natural vegetation. The relatively large area of planting on these farms was insufficient to overcome the lack of these key structural attributes. Old-growth woodland, coppice regrowth, seedling regrowth, and planted areas had different habitat values for different reptiles and arboreal marsupials. We conclude that, although plantings may improve habitat conditions for some taxa, they may not effectively offset the negative effects of native vegetation clearing for all species, especially those reliant on old-growth woodland. Restoring suitable habitat for such species may take decades to centuries.  相似文献   

18.
Abstract: Management of amphibian populations to reverse recent declines will require defining high-quality habitat for individual species or groups of species, followed by efforts to retain or restore these habitats on the landscape. We examined landscape-level habitat relationships for frogs and toads by measuring associations between relative abundance and species richness based on survey data derived from anuran calls and features of land-cover maps for Iowa and Wisconsin. The most consistent result across all anuran guilds was a negative association with the presence of urban land. Upland and wetland forests and emergent wetlands tended to be positively associated with anurans. Landscape metrics that represent edges and patch diversity also had generally positive associations, indicating that anurans benefit from a complex of habitats that include wetlands. In Iowa the most significant associations with relative abundance were the length of the edge between wetland and forest ( positive) and the presence of urban land (negative). In Wisconsin the two most significant associations with relative abundance were forest area and agricultural area ( both positive). Anurans had positive associations with agriculture in Wisconsin but not in Iowa. Remnant forest patches in agricultural landscapes may be providing refuges for some anuran species. Differences in anuran associations with deep water and permanent wetlands between the two states suggest opportunities for management action. Large-scale maps can contribute to predictive models of amphibian habitat use, but water quality and vegetation information collected from individual wetlands will likely be needed to strengthen those predictions. Landscape habitat analyses provide a framework for future experimental and intensive research on specific factors affecting the health of anurans.  相似文献   

19.
Abstract:  We investigated the impact of pastoral management on birds in subtropical grassy eucalypt woodland in southeastern Queensland, Australia, where the patterns of land management have made it possible to disentangle the effects of livestock grazing from those of tree clearing. We recorded changes in bird species composition, density, and relative abundance across two woodland habitat types (riparian and nonriparian) and two levels of clearing (wooded and nonwooded) and three levels of livestock grazing (low, moderate, and high) replicated over space (1000 km2) and time (2001–2002). We predicted that species that depend on understory vegetation would be most negatively affected by livestock grazing. A Bayesian generalized linear model showed that the level of grazing had the greatest effect when trees were present. When trees were absent, the impact of grazing was overshadowed by the effects of a lack of trees. Over 65% of species responded to different levels of grazing, and the abundance of 42% of species varied markedly with habitat and grazing. The most common response to grazing was high species relative abundance under low levels of grazing (28% of species), species absence at high levels of grazing (20%), and an increase in abundance with increasing grazing (18%). Despite having similar bird assemblages, the effect of grazing was stronger in riparian habitat than in adjacent woodland habitat. Our results suggest that any level of commercial livestock grazing is detrimental to some woodland birds, particularly the understory-dependant species, as predicted. Nevertheless, provided trees are not cleared, a rich and abundant bird fauna can coexist with moderate levels of grazing. Habitats with high levels of grazing, on the other hand, resulted in a species-poor bird assemblage dominated by birds that are increasing in abundance nationally .  相似文献   

20.
Abstract: Deer densities in forests of eastern North America are thought to have significant effects on the abundance and diversity of forest birds through the role deer play in structuring forest understories. We tested the ability of deer to affect forest bird populations by monitoring the density and diversity of vegetation and birds for 9 years at eight 4-ha sites in northern Virginia, four of which were fenced to exclude deer. Both the density and diversity of understory woody plants increased following deer exclosure. The numerical response of the shrubs to deer exclosure was significantly predicted by the soil quality (ratio of organic carbon to nitrogen) at the sites. Bird populations as a whole increased following exclosure of deer, particularly for ground and intermediate canopy species. The diversity of birds did not increase significantly following exclosure of deer, however, primarily because of replacement of species as understory vegetation proceeded through successional processes. Changes in understory vegetation accounted for most of the variability seen in the abundance and diversity of bird populations. Populations of deer in protected areas are capable of causing significant shifts in the composition and abundance of bird communities. These shifts can be reversed by increasing the density and diversity of understory vegetation, which can be brought about by reducing deer density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号