共查询到15条相似文献,搜索用时 62 毫秒
1.
羟基氧化铁催化臭氧氧化对滤后水THMs生成势的控制作用 总被引:3,自引:3,他引:3
实验比较了滤后水经过单独臭氧氧化和羟基氧化铁催化臭氧氧化后的三卤甲烷生成势(THMFP).考察了不同的溴离子含量、pH值、碱度、O3/TOC比例、氧化反应时间、催化剂投量时,2种氧化条件下滤后水THMFP的变化规律.发现羟基氧化铁催化氧化后,滤后水的THMFP比单独臭氧氧化后的降低了30.5%.溴离子浓度较高时THMs以溴代产物为主,羟基氧化铁催化氧化后溴代的THMFP是单独臭氧氧化后的45%~65.5%.在滤后水pH值为6.33~9.43、O3/TOC比值为0.65~2.05、氧化时间为2~20min的条件下,羟基氧化铁催化氧化都表现出明显降低THMFP的优势.碱度升高使2种氧化后的THMFP都降低,且使其差值减小.催化剂存在降低THMFP的最佳投量.催化氧化降低滤后水THMFP的原因是比单独臭氧氧化提高了对TOC的去除率,催化产生的羟基自由基进一步氧化降低了水中有机物卤代活性位的数量. 相似文献
2.
水合氧化铁催化臭氧氧化去除水中痕量硝基苯 总被引:14,自引:13,他引:14
以实验室制备的水合氧化铁(IHO)为催化剂,研究了其催化臭氧氧化去除水中痕量难氧化有机物--硝基苯的效能,通过研究叔丁醇对催化反应的影响以及氧化物催化性能之间的对比,间接推断了催化反应的机理.探讨了催化剂投量、水质因素和催化剂重复使用对催化氧化硝基苯的影响.发现IHO对臭氧氧化水中的痕量硝基苯有明显的催化活性,在本实验条件下,以蒸馏水为本底,反应20min时催化氧化硝基苯的去除率比单独臭氧氧化高出44.8%.这种催化作用遵循羟基自由基的途径,氧化物羟基含量多对催化反应有利.本实验条件下催化剂投量最佳为100mg/L,水溶液的pH值接近氧化物零电荷pH值(pHzpc)时催化作用最明显,水中重碳酸根浓度为2.38mmol/L时催化作用受到显著抑制.催化剂重复使用了5次,其催化活性基本没有变化,没有发现铁离子溶出. 相似文献
3.
臭氧预氧化对藻细胞及胞外分泌物消毒副产物生成势的影响 总被引:4,自引:2,他引:4
以处于对数生长期后期的悦目颤藻为研究对象,研究了藻细胞及胞外分泌物对氯化消毒副产物生成势(DBPFP)的贡献,以及臭氧预氧化对DBPFP的影响规律,即不同臭氧投量及预氧化时间对DBPFP的影响,并探讨臭氧预氧化控制消毒副产物生成势的原因.研究表明,藻细胞和胞外分泌物的三卤甲烷类副产物都主要是氯仿和一溴二氯甲烷,卤乙酸类副产物都主要是二氯乙酸和三氯乙酸.颤藻细胞和其EOM本身及经臭氧预氧化混凝后形成卤乙酸的能力基本都高于形成三卤甲烷的能力,在实际含藻水的处理中,应该更加重视对卤乙酸的控制.臭氧预氧化可以降低胞外分泌物形成氯化消毒副产物(DBP)的能力,且随着反应时间延长,DBPFP降低越多.在本试验条件下,0.975 mg/L臭氧预氧化10min后混凝,可比单纯混凝降低胞外分泌物DBPFP 31%,其中HAAFP降低52.6%,而THMFP却升高12.5%,可见臭氧预氧化控制胞外分泌物DBPFP主要原因是其可以很好地控制卤乙酸生成势.同时臭氧预氧化会使含藻细胞水样的DBPFP大幅度升高,且随着氧化时间延长,各种氯化消毒副产物生成势几乎呈线性增加.在实际水处理中,应在去除藻细胞之后再进行臭氧氧化以控制DBPFP. 相似文献
4.
水中羟基氧化铁催化臭氧分解和氧化痕量硝基苯的机理探讨 总被引:19,自引:12,他引:19
测定了木质颗粒活性炭(GAC)和负载在GAC上的羟基氧化铁(FeOOH)催化水中臭氧分解的速率常数并探讨了催化臭氧分解的途径.以水中几种氧化物表面羟基密度和表面零电荷pH值(pHzpc)为表征氧化物表面性质的参数,考察了2个参数对催化臭氧氧化水中硝基苯的影响.GAC和负载在GAC上的FeOOH使水中臭氧一级分解速率常数分别提高了68%和108%,用叔丁醇捕获掉生成的羟基自由基后,前者的分解速率常数降低了9%,后者降低了20%.GAC在催化臭氧分解时主要起到吸附剂和还原剂的作用,FeOOH催化臭氧分解过程中促进了羟基自由基生成.氧化物表面羟基密度和催化臭氧氧化水中硝基苯的效果之间没有直接的关系,由氧化物的pHzpc决定的表面电荷状态与催化氧化效果有关,表面接近电中性时对催化氧化硝基苯有利.高密度的表面羟基会使表面羟基之间形成较强的氢键,使催化作用减弱. 相似文献
5.
FeOOH催化臭氧氧化滤后水中NOM的小分子副产物的生成 总被引:7,自引:0,他引:7
以滤后水中富集、分离出的6种不同特性的天然有机物(NOM)组分为对象,考察了羟基氧化铁(FeOOH)催化臭氧氧化NOM各组分后小分子醛、酮及酮酸副产物的生成情况.发现FeOOH催化氧化比臭氧氧化提高了对NOM 各组分DOC和SUVA的去除率.FeOOH催化氧化并不能有效地降低NOM各组分小分子副产物的产量.催化氧化和臭氧氧化后,憎水中性物质(HON)的醛、酮、酮酸的总产量都最高,NOM碱性组分的小分子副产物产量都相对最低.NOM各组分催化氧化后甲醛和丙酮酸的产量最大,这和单独臭氧氧化的结论一致.特别是HON的甲醛产率占其醛、酮总产量的71.6%,单位DOC丙酮酸的产量达78.6 μg/mg.用NOM组分的小分子副产物折算DOC占各组分氧化后DOC的质量分数来间接显示氧化后剩余DOC的可生物降解性,发现催化氧化比单独臭氧氧化进一步提高了滤后水中NOM各组分的可生化性. 相似文献
6.
评价了生物强化活性炭(BAC)的生物降解与吸附作用协同对消毒副产物前体物质(DBPFP)的控制效果.控制 BAC 的空床接触时间(EBCT)为 20min 时,BAC 对卤乙酸生成势(HAAFP)的去除率达到 59%,而相同条件下,普通颗粒炭(GAC)对其去除率只有 27%.BAC 工艺中微生物数量和微生物活性均明显高于 GAC 工艺.通过微生物降解作用和活性炭吸附作用的协同,BAC 对 HAAFP 的去除率与 EBCT 具有明显的线性相关性(R2=0.9069).BAC 出水中指标 UV254与 HAAFP 也表现出一定的线性相关性(R2=0.7702). 相似文献
7.
有机酸在金属氧化物上的吸附对催化臭氧氧化的影响 总被引:2,自引:0,他引:2
以苯甲酸(BA)、邻苯二甲酸(PA)、商品腐殖酸(CHA)和反渗透法提取的松花江水腐殖酸(SHA)为目标物,研究了臭氧氧化及羟基氧化铁(FeOOH)和二氧化铈(CeO2)为催化剂时的吸附与催化臭氧氧化去除这些有机物的效果.结果表明,BA在FeOOH表面没有吸附,FeOOH对BA催化氧化的去除率比臭氧单独氧化高45%;PA在FeOOH上的吸附使其溶液中的浓度减少了5%,此时FeOOH对PA的氧化没有催化作用.CeO2有助于催化臭氧氧化在其表面吸附较强的PA,且对氧化产生的草酸根有催化去除作用,但对不吸附在其表面的BA没有催化臭氧氧化作用.CeO2对腐殖酸的吸附比FeOOH强,其催化臭氧氧化去除腐殖酸的作用比FeOOH更显著;当无机阴离子和腐殖酸竞争金属氧化物表面的吸附位时,催化作用受到抑制. 相似文献
8.
臭氧活性炭工艺中卤乙酸生成潜能与相对分子质量分布关系的研究 总被引:4,自引:0,他引:4
通过臭氧生物活性炭和微曝气生物活性炭(O3/BAC和micro-aeration/BAC)2套工艺研究其对不同相对分子质量有机物去除特点和不同相对分子量有机物生成的卤乙酸及其去除特性.结果表明,O3/BAC工艺对相对分子质量区间>30×103的有机物去除率超过90%.O3/BAC与micro-aeration/BAC出水中,UV254值表示相对分子质量<103的有机物超过50%,相对分子量区间在10×103~30×103的有机物占20%~30%;在O3/BAC和微曝气/BAC工艺出水中,以相对分子质量<103的有机物生成的卤乙酸最多,生成DCAA、TCAA、DBAA分别为97.00、38.55、2.10μg/L和104.00、42.75和2.92μg/L;采用各处理单元不同分子量有机物与氯反应生成的DCAA、TCAA、DBAA和THAAs与相对应的UV254值进行线性拟合,相关系数分别为0.827、0.851 3、0.815 7和0.878.UV254与臭氧生物活性炭处理工艺出水中的卤乙酸生成潜能具有较好的线性关系. 相似文献
9.
10.
无机离子对催化臭氧化降解水中痕量硝基苯效果的影响 总被引:3,自引:2,他引:3
考察了天然水体中常见的无机离子对单独臭氧氧化、臭氧/蜂窝陶瓷和臭氧/改性蜂窝陶瓷3种氧化工艺分解水中痕量硝基苯的影响.单独臭氧氧化和臭氧/改性蜂窝陶瓷对硝基苯的分解效率随着钙离子浓度的升高(0~4 mg·L-1)分别增加了5.0%和8.6%,在相同实验条件下,臭氧/蜂窝陶瓷对硝基苯的降解效率在钙离子浓度为0.5 mg·L-1时达到最大值;单独臭氧氧化、臭氧/蜂窝陶瓷和臭氧/改性蜂窝陶瓷在锰离子浓度增加(0~4 mg·L-1)的情况下对硝基苯的去除率分别增加了10.9%、11.6%和9.6%,随着重碳酸根离子浓度的增加(0~200 mg·L-1)分别降低了8.6%、11.5%和8.9%;硝酸根和硫酸根离子浓度对单独臭氧氧化降解水中硝基苯无明显影响,另2种氧化工艺对硝基苯的分解效率随着硝酸根和硫酸根离子浓度的增加而降低. 相似文献
11.
酸活化赤泥催化臭氧氧化降解水中硝基苯的效能研究 总被引:4,自引:1,他引:4
以铝工业废物赤泥为原料,采用酸化的方法活化赤泥,提高其在多相催化臭氧氧化除污染体系中的催化活性,并对其催化臭氧除污染效能及机制进行探讨.研究发现,和赤泥原矿相比,酸化赤泥表现出十分显著的催化能力;酸化赤泥(RM6.0)催化臭氧氧化硝基苯的去除率随臭氧浓度的增加而增加;当臭氧浓度由0.4 mg.L-1增加至1.7 mg.L-1时,硝基苯的去除率由45%提高到92%.溶液pH对RM6.0催化体系利用臭氧能力的影响与其催化臭氧氧化降解NB的影响表现出一致的结果.初始pH变化所带来的RM6.0催化活性的变化,主要是由于体系中氢氧根浓度的变化,导致臭氧分解形成羟基自由基所致;过高pH值导致的羟基自由基的猝灭显促使RM6.0催化臭氧氧化NB活性的降低.通过RM6.0对臭氧的利用能力及羟基自由基抑制实验结果发现,RM6.0催化臭氧降解NB的主要作用机制是催化剂表面吸附臭氧,实现臭氧在催化剂表面的富集,进而实现对NB有机污染物的氧化降解.在这个过程中羟基自由基是存在的,主要是在臭氧与硝基苯在界面氧化过程中分解而成,并进一步氧化NB. 相似文献
12.
以石墨为催化剂载体,以H2PtCl6·6H2O为贵金属活性组分前驱物,采用等体积浸渍法制备了Pt/石墨催化剂.对Pt/石墨催化臭氧化、石墨催化臭氧化以及单独臭氧氧化降解草酸的效果进行了研究.结果表明,在本实验条件下,单独臭氧氧化、石墨催化臭氧化和Pt/石墨催化臭氧化草酸的去除率分别为3.0%、47.6%和99.3%.Pt的负载可以显著地提高石墨催化臭氧化的效果.以草酸的去除效率为催化活性指标对Pt/石墨催化剂的制备条件进行了优化.结果表明,石墨载体的预处理没有提高Pt/石墨催化剂的活性.Pt/石墨催化剂最佳制备条件为:以水为溶剂,浸渍时间24 h,活性组分Pt的负载量为1.0%,氢还原温度为350℃.所制备催化剂经重复使用5次,草酸去除率仍超过90%. 相似文献
13.
为研究常见无机阴离子对含溴水臭氧化过程溴酸盐(Br O-3)生成的影响,本研究通过小试分别考察了不同质量浓度氯离子(Cl-)、碳酸氢根离子(HCO-3)和硫酸根离子(SO2-4)对Br O-3生成的影响,并结合反应过程臭氧衰减、中间产物次溴酸/次溴酸根离子(HOBr/OBr-)生成及总溴浓度变化情况,进一步分析了这3种无机阴离子对Br O-3生成的影响机制.结果表明,以60 min为例,Cl-质量浓度为3~150 mg·L-1的水样Br O-3生成量相对于未投加Cl-条件降低了8.8%~25.7%;反应20min时,SO2-4质量浓度从0 mg·L-1增至30 mg·L-1时,Br O-3生成量减少了63.9%;而当HCO-3质量浓度由0 mg·L-1上升至30 mg·L-1时,Br O-3生成量增加了6.4倍,其质量浓度超过30 mg·L-1,继续投加HCO-3对Br O-3生成量的促进作用提高不大.研究表明,在相同的臭氧投加量和相同的反应时间下,投加Cl-和SO2-4均能抑制臭氧化过程Br O-3的生成,而投加HCO-3能极大地促进Br O-3的生成. 相似文献
14.
Fe-MCM-41催化臭氧氧化间甲酚废水 总被引:1,自引:1,他引:1
首次应用Fe-MCM-41催化臭氧氧化间甲酚废水.研究了铁的掺杂质量分数、催化剂质量浓度和底物质量浓度对间甲酚转化率和TOC去除率的影响,并采用XRD、H2-TPR、穆斯堡尔谱、BET对催化剂的结构性质进行表征.结果表明,铁的掺杂质量分数对Fe-MCM-41在催化臭氧氧化间甲酚中的活性具有较大影响,最佳掺杂质量分数为4.4%.随着铁掺杂质量分数的提高,介孔分子筛的结晶度减弱,介孔结构晶面间距减小,比表面积、孔容、平均孔径整体上呈下降趋势,Fe在介孔分子筛表面仅以γ-Fe2O3形式存在,且催化剂具有良好的铁磁性和稳定性.臭氧在反应中既有直接氧化作用也有间接氧化作用,且二者比近似为1∶1.在模型废水原始p H值条件下,使用Fe掺杂质量分数为4.4%的催化剂,当间甲酚初始质量浓度为500mg·L-1,催化剂质量浓度为0.1 g·L-1时,30 min内间甲酚转化率为100%,TOC去除率为26.8%. 相似文献
15.
Si-FeOOH催化臭氧氧化降解活性艳红MX-5B的效能研究 总被引:2,自引:1,他引:2
通过共沉淀的方法在羟基氧化铁(FeOOH)合成过程中掺入硅(Si)来制备硅羟基氧化铁(Si-FeOOH)催化剂,比较其与FeOOH在物理强度等方面的差异,同时研究Si-FeOOH催化臭氧氧化降解活性艳红的效能、推断反应机理、考察各种因素对脱色率的影响.结果表明:相对于FeOOH,Si-FeOOH的物理强度有所提高,在水溶液中不易破碎;Si-FeOOH催化臭氧氧化降解活性艳红效果显著,比单独臭氧氧化的脱色率有较大提高;催化过程遵循自由基反应机理;脱色率随着臭氧浓度的增加而升高,在应用Si-FeOOH催化臭氧对染料脱色时存在最佳催化剂投量;Si-FeOOH在中性条件下其催化活性显著,催化剂性能稳定,可重复利用. 相似文献