首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coastal lagoons are characterized by a constant threat of eutrophication and a critical coexistence of differing submerged vegetation forms. This paper investigates the competitive equilibrium of macroalgae and phanerogams in the Orbetello lagoon in relation to physico-chemical and environmental factors, including wind, nutrients in the water column, and sediment characteristics. A mathematical model describing the evolution of the submerged vegetation as a function of the abiotic parameters is used here in conjunction with specific experimental studies to explain the relationship between phanerogams (seagrasses) prairie expansion, water movements, and sediment characteristics. The combination of specific sediment sampling and mathematical modelling shows that water circulation and the state of the upper sediment are both dominant factors in determining the phanerogams distribution in the lagoon and the mutually exclusive growth of these groups in differing parts of the lagoon. Water currents control the distribution of floating macroalgae, resulting in an uneven accumulation of decomposing biomass and phanerogams seed dispersal. The oxygenation provided by the rooted phanerogams affects the sediment characteristics, making them suitable for further prairie expansion. In addition to sediment analysis the use of a mathematical model combining the hydrodynamics and the water quality of the lagoon provides a thorough explanation of the expansion of the rooted vegetation in critical areas. A further result of this research is the validation of the model, originally calibrated with the lagoon central stations’ data, with the newly acquired data from several other parts of the ecosystem. The model predictions are in good agreement with the field observations under a number of environmental conditions and explain the observed expansion trend of phanerogams, which are beneficial for the lagoon ecology, more thoroughly than by relying on the sediment observations alone.  相似文献   

2.
A sediment cloud release in stagnant ambient fluid occurs in many engineering applications. Examples include land reclamation and disposal of dredged materials. The detailed modeling of the distinct characteristics of both the solid and fluid phases of the sediment cloud is hitherto unavailable in the literature despite their importance in practice. In this paper, the two-phase mixing characteristics of the sediment cloud are investigated both experimentally and theoretically. Experiments were carried out to measure the transient depth penetration and the lateral spread of the sediment cloud and its entrained fluid using the laser induced fluorescence technique, with a range of particle sizes frequently encountered in the field (modeled at laboratory scale). A two-phase model of the sediment cloud that provides detailed predictions of the mixing characteristics of the individual phases is also proposed. The entrained fluid characteristics are solved by an integral model accounting for the buoyancy loss (due to particle separation) in each time step. The flow field induced by the sediment cloud is approximated by a Hill’s spherical vortex centered at the centroid and with the size of the entrained fluid. The particle equation of motion under the effect of the induced flow governs each computational particle. A random walk model using the hydrodynamic diffusion coefficient is used to account for the random fluctuation of particles in the dispersive regime. Overall, the model predictions of the two-phase mixing characteristics are in good agreement with the experimental data for a wide range of release conditions.  相似文献   

3.
In marine biogeochemical modeling, the sediment is usually represented by diagenetic models, but in shallow ecosystems these models are incomplete, because they do not take into account the benthic primary production. While microphytobenthos (MPB) is known to strongly impact mineralization pathways and nutrient fluxes, MPB is rarely integrated as an explicit variable. To investigate the impact of microphytobenthos on early diagenesis in sediment, we built a fine-scale dynamic model, based on the diagenetic model OMEXDIA and including MPB and associated processes. The model outputs were similar to a data set of MPB-colonized sediment sampled in Florida Bay, suggesting that the model can recreate a realistic situation. The model showed that MPB activities induced a strong diurnal rhythm on concentration profiles, fluxes, and mineralization processes. When MPB was present at the sediment surface, the total mineralization was strongly enhanced thanks to the supply of labile organic matter. In contrast, coupled nitrification–denitrification was inhibited by a factor of 3.8. This inhibition can be explained by the competition for nitrate and ammonium between MPB and bacteria. Nitrogen uptake of MPB represented 96% of the daily supply of dissolved inorganic nitrogen. This was more than 50 times greater than N consumption by denitrification. With MPB, sediment nitrogen flux to the water column was reduced by a factor of 70, suggesting that sediment colonized by MPB represents a minor source of nutrients for phytoplankton and bacterioplankton. Results showed that current diagenetic models are not well-suited for shallow ecosystems with significant MPB primary production.  相似文献   

4.
As nutrients and organic matters are transported preferentially in an adsorbed state and tend to bind to the sediments, sediment transport plays an important role on eutrophication processes in the estuaries. The timescale of sediment transport is of significance for studying the retention of pollutants and eutrophication processes in the estuaries. Unlike transport of dissolved substances that is mainly controlled by advection and diffusion processes, the sediment transport is significantly affected by the intermittent settling and resuspension processes. A three-dimensional model with suspended sediment transport was utilized to investigate the transport timescale of river-borne sediment in the tidal York River Estuary. The results indicate that river discharge dominantly determines the age of river-borne sediment in the estuary. High river discharge results in a low sediment age compared to that under mean flow. The intermittent effects of settling and resuspension events greatly affect the river-borne sediment age. Both settling velocity and critical shear stress are shown to be key parameters in determining the sediment transport timescale. The sediment age decreases as settling velocity and/or critical shear stress decrease, while it increases with the increase of settling velocity that prevents the sediment to be transported out of the estuary.  相似文献   

5.
We employ a three-dimensional coupled hydro-morphodynamic model, the Virtual Flow Simulator (VFS-Geophysics) in its Unsteady Reynolds Averaged Navier–Stokes mode closed with \(k-\omega\) model, to simulate the turbulent flow and sediment transport in large-scale sand and gravel bed waterways under prototype and live-bed conditions. The simulation results are used to carry out systematic numerical experiments to develop design guidelines for rock vane structures. The numerical model is based on the Curvilinear Immersed Boundary approach to simulate flow and sediment transport processes in arbitrarily complex rivers with embedded rock structures. Three validation test cases are conducted to examine the capability of the model in capturing turbulent flow and sediment transport in channels with mobile-bed. Transport of sediment materials is handled using the Exner equation coupled with a transport equation for suspended load. Two representative meandering rivers, with gravel and sand beds, respectively, are selected to serve as the virtual test-bed for developing design guidelines for rock vane structures. The characteristics of these rivers are selected based on available field data. Initially guided by existing design guidelines, we consider numerous arrangements of rock vane structures computationally to identify optimal structure design and placement characteristics for a given river system.  相似文献   

6.
Estimation of sediment concentration in rivers is very important for water resources projects planning and managements. The sediment concentration is generally determined from the direct measurement of sediment concentration of river or from sediment transport equations. Direct measurement is very expensive and cannot be conducted for all river gauge stations. However, sediment transport equations do not agree with each other and require many detailed data on the flow and sediment characteristics. The main purpose of the study is to establish an effective model which includes nonlinear relations between dependent (total sediment load concentration) and independent (bed slope, flow discharge, and sediment particle size) variables. In the present study, by performing 60 experiments for various independent data, dependent variables were obtained, because of the complexity of the phenomena, as a soft computing method artificial neural networks (ANNs) which is the powerful tool for input–output mapping is used. However, ANN model was compared with total sediment transport equations. The results show that ANN model is found to be significantly superior to total sediment transport equations.  相似文献   

7.
This paper reports a numerical study on dam-break waves over movable beds. A one-dimensional (1-D) model is built upon the Saint-Venant equations for shallow water waves, the Exner equation of sediment mass conservation and a spatial lag equation for non-equilibrium sediment transport. The set of governing equations is solved using an explicit finite difference scheme. The model is tested in various idealized experimental cases, with fairly good agreement between the numerical predictions and measurements. Discrepancies are observed at the earlier stage of the dam-break wave and around the dam location due to no vertical velocity component being taken into account. Sensitivity tests confirm that the friction coefficient is an important parameter for the evaluation of sediment transport processes operating during a dam-break wave. The influence of the non-equilibrium adaptation length (or the lag distance) is negligible on the wavefront celerity and weak on the free surface and bed profiles, which indicates that one may ignore the spatial lag effect in dam-break wave studies. Finally, the simulation of the Lake Ha!Ha! dyke-break flood event shows that the model can provide relevant results if a convenient formula for computing the sediment transport capacity and an appropriate median grain diameter of riverbed material are selected.  相似文献   

8.
9.
A mathematical model was developed to estimate nitrate release from ocher pellets in benthic sediment. Ocher pellets, called “limnomedicine,” consisting of ocher and calcium nitrate were used to suppress phosphorus release from contaminated sediment under anaerobic conditions. The proposed model represents the fate and transport of nitrate released from the pellets, in both the water column and the sediment. Most of the nitrate (83.6%) released from the pellets was consumed in the degradation of organic matter and FeS in the sediment over a period of 12 days. While an increase in pellet dosage helps to accelerate the sediment treatment rate, it also has the effect of increasing the mass of nitrate that diffuses into the water column. Quantitative analysis of these effects using the proposed mathematical model makes it possible to determine the proper pellet dosage based on sediment conditions such as organic matter content.  相似文献   

10.
Results of field experiments using the Virginia Institute of Marine Science' Sea Carousel and tripod system reveal a highly dynamic sediment activity at the Clay Bank site in the York River. At the water-sediment interface, the critical bed shear stress for sediment erosion varied between 0.026 Pa and 0.1 Pa. For the well consolidated sediment below the interface, the critical bed shear stress increased significantly, to more than 0.6 Pa. The seasonal variation of erosion rate for the surficial sediment is significant. For the well consolidated sediment below the surficial sediment, however, the seasonal variation diminished and erosion rate approached a constant. Experimental results from the Carousel deployments imply that the erosion process for quasi-steady tidal flows is always near equilibrium. For this reason, a constant rate erosion model is proposed for the time during tidal acceleration phases. For other times, the erosion rate would be zero. The measured suspended sediment concentration at 10 cm above bed from the VIMS tripod system also Supports this model.  相似文献   

11.
A model of nitrogen and phosphorus cycles in the sediment of a lagoon has been developed. This model was applied to the Thau lagoon (southern France). Sediment was sliced in three layers to reproduce the oxygen profile, which is simulated within the model. Following an equilibrium hypothesis, the model was calibrated against field data. State variables and fluxes were estimated in the sediment and across the sediment-water interface. A Monte Carlo sensitivity analysis was performed to determine the most sensitive parameters and sediment state variables. A dynamic simulation with varying oxygen concentrations then showed the influence of anoxia on the phosphorus and nitrogen fluxes between water and sediment.  相似文献   

12.
13.
The interactions between bed sediments and the water column in shallow, eutrophic lakes have tremendous implications for the fate and transport of nutrients in those water bodies. This has resulted in the development of water quality models for lakes incorporating the processes of sediment resuspension. Reliable resuspension models are thus needed to accurately represent this phenomenon. In this paper, three different sediment-resuspension models are combined with a hydrodynamic and water quality model, dynamic lake model-water quality (DLM-WQ), and the resulting models are used to simulate nutrient distributions in the highly eutrophic Salton Sea, California, USA. One of the resuspension formulas is based upon sediment characteristics as well as the bed shear stress exerted by wind-induced waves and currents, while the other two are standard, power-law-type formulas for cohesive sediments with two different exponents. The outputs for water quality variables, such as temperature, chlorophyll a, dissolved oxygen and nutrients, obtained from the three resulting models and from an earlier DLM-WQ run with a simple empirical sediment-resuspension model are compared with measured data. The level of agreement between the simulations and the measured data is assessed by using both statistical and graphical model evaluation methods, including measures of residual errors, sample autocorrelations, t-tests, and box plots. Based on these assessments, DLM-WQ with an extended version of the García and Parker [García, M.H., Parker, G., 1993. Experiments on the entrainment of sediment into suspension by a dense bottom current. J. Geophys. Res.-Oceans 98, 4793–4807] relationship gave the best results for water quality in the Salton Sea, confirming that the use of formulas with more information on the sediment characteristics yields more accurate results. To the best of our knowledge, this is the first effort to combine water quality models for lakes and reservoirs with a sediment-resuspension model which was originally intended for open-channel flows. The simulations confirm that sediment resuspension is the most dominant process in the Salton Sea's nutrient cycling. The effect of proposed physical changes to the Salton Sea on water quality characteristics is also addressed.  相似文献   

14.
Mining development can potentially lead to cumulative impacts on ecosystems and their services across a range of scales. Site-specific environmental impact assessments are commonly assessed for mining projects; however, large-scale cumulative impacts of multiple mines that aggregate and interact in resources regions have had little attention in the literature and there are few examples where regional-scale mining impacts have been assessed on ecosystem services. The objective of this study is to quantify regional-scale cumulative impacts of mining on sediment retention ecosystem services. We apply the sediment delivery ratio model of Integrated Valuation of Ecosystem Services and Trade-offs to calculate and map the sediment retention and export using a synthetic catchment model and a real case study under different mining scenarios in an Australian mining region. Two impact indices were created to quantify the cumulative impacts associated with a single mine and the interactions between multiple mines. The indices clarified the magnitude of impacts and the positive/negative impacts associated with regional-scale sediment retention and export. We found cumulative impacts associated with multiple mines’ interaction occurred but the influence of these interactions was relatively weak. This research demonstrated the potential for utilising ecosystem services modelling for the quantitative assessment of the cumulative impacts. Such research provide decision-makers and planners with a tool for sustainable regional and landscape planning that balances the needs of mining and the provision of ecosystem services.  相似文献   

15.
A coupled divergence-free Incompressible Smoothed Particle Hydrodynamics (ISPH) framework for sediment transport is extended for application in generalized free-surface flow situations. The computation of interaction force pair between pure fluid and sediment modules makes the model flexible enough to be applicable for diverse scenarios with variable resolutions. Three scenarios are included to quantify the contribution of individual components in the force pair. First two scenarios with rapid free-surface variation highlight the effect of fluid pressure gradient on granular flow. The third scenario with minimal free-surface variation considers bed movement under a horizontal marine pipeline for a prolonged time period. The framework can simulate sediment transport for generalized problems with slowly/rapidly varying free-surface flow conditions.  相似文献   

16.
A simple mathematical fate model, Multi‐Phase Non‐Steady State Equilibrium Model (MNSEM) is proposed to evaluate distribution, persistence, and concentrations of chemicals in a model environment consisting of air, water, soil and sediment phases. The model is applied to evaluation of environmental fate and concentration of trichloroethylene and 1,4‐dichlorobenzene under generic conditions representative of Japan.

Evaluated chemical concentrations in air are within a factor of 3 of average values in Japanese atmosphere, and evaluated concentrations in water, sediment, or fish are greater than an order of magnitude below detection limits in real environments, so that evaluated concentrations are in reasonable agreement with environmental measurement data in Japan.

Although MNSEM is not a model for site‐specific evaluation of environmental fate, results suggested that this model is an adequate method to aid in evaluation of fate of chemicals under generic environment conditions. Evaluated concentration‐profiles may be used to estimate average chemical exposure concentrations for humans and the environment.  相似文献   

17.
Flooding events in wetlands transport sediment particles landwards and can increase accretion in some areas of the wetland or resuspend the sediment in other areas. In this study a flooding event with different water discharges was analyzed in a laboratory simulated wetland to determine the effect stem density has on particle trapping. The discharge that entered the simulated wetland was a particle laden barotropic current that initially produced a pulse that traveled through the wetland. After the first pulse, a baroclinic current, with a different timescale to the initial pulse, developed. Three stem densities, along with the ‘without plant case’, were considered. A semi-empirical model was formulated to explain the propagation of the water pulse. The model predicted the velocity of the pulse dampening in the presence of the simulated vegetation, by using the roughness parameter that had been found to increase with stem density. The baroclinic current propagated at a lower velocity than the pulse did, and its velocity decreased with stem density. As less sediment was found in the wetland with denser canopies, this indicates that the presence of a canopy acts as a barrier to sediment transportation. Furthermore, a greater amount of sediment was deposited in regions at the foot of the denser vegetated wetland zone and the sediment deposition also increased with the water discharge.  相似文献   

18.
Suspended particulate matter dynamics in a particle framework   总被引:1,自引:0,他引:1  
Suspended particulate matter (SPM) dynamics in ocean models are usually treated with an advection–diffusion equation for one or more sediment size classes coupled to the hydrodynamical part of the model. Numerical solution of these additional partial differential equations unavoidably introduces numerical diffusion, i.e. in the case of sharp gradients the possible occurrence of artificial oscillations and non-positivity. A Lagrangian particle-tracking model has been developed to simulate short-term SPM dynamics. Modelling individual sediment particles allows a straightforward physical interpretation of the processes. The tracking of large numbers of individual and independent particles (up to 25 million in total in a single sediment class) can be achieved on high performance computer clusters, due to efficient parallelisation of particle tracking. The movement of the particles is described by a stochastic differential equation, which is consistent with the advection–diffusion equation. Here, the concentration profile is represented by a set of independent moving particles, which are advected according to the 3D velocity field, while the diffusive displacements of the particles are sampled from a random distribution, which is related to the eddy diffusivity field. To account for erosion a new parameterisation is proposed. Three numerical particle tracking schemes (EULER, MILSTEIN and HEUN) are presented and validated in idealised test cases. Finally, the particle tracking algorithms are applied to a realistic scenario, a severe winter storm in the East Frisian Wadden Sea (southern North Sea). The comparison with observations and an Eulerian SPM transport model seems to indicate a somewhat better fidelity of the Lagrangian approach.  相似文献   

19.
河流水体中重金属形态模型研究   总被引:5,自引:0,他引:5  
林玉环  李琪 《环境化学》1992,11(6):35-42
本文提出了一种重金属形态模型,用于模拟水体中的水溶态、颗粒态和底泥、悬浮物的活动态和非活动态。以乐安江水体中铜污染为背景,计算结果与现场调查分析的数据比较表明,两者基本吻台,说明模型基本上是合理的,概括了重金属污染的重要过程,参数的选择反映了河流的实际情况。  相似文献   

20.
The Topolobampo coastal lagoon system, located on the eastern side of the Gulf of California, is a marine zone of considerable economic importance with vessel traffic, dredging operations and aquaculture development. Despite its relevance as a conservation site, this ecosystem has been poorly studied. Since life in marine substrates is abundant, we investigated the capability of tidal hydrodynamics in the lagoon to erode and to accumulate sediment. We calculated the morphodynamics caused by bed load sediment transport applying a two dimensional non-linear hydrodynamic finite difference model. Bed erosion and accretion patterns of sediment (for specific grain size: 170 μm) were determined from the divergence of sediment transport. After a year of numerical simulation of sediment transport the areas of noticeable changes on the bottom of the lagoon have been revealed. Most of sediment accretion took place in the narrow steeped channel connecting the Topolobampo and Ohuira sections. This area appears characterized by the presence of high tidal velocity gradients. Another finding was that accretion areas were coupled with erosion zones in an alternating form. This outcome suggests that sediment do not travel long distances but is deposited nearby the erosion sites. The results are strong evidence of the influence of tidal hydrodynamics on the sediments distribution in the Topolobampo coastal lagoon system and on the generation of substrates where marine life may find protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号