首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
宋文婷  陆光华 《生态环境》2008,17(1):434-438
废水中复杂的成分及其复杂的作用机制和外界的种种不确定性因素为水生生态系统中环境雌激素的风险研究造成了困难.文章介绍了用于指示环境雌激素污染的主要生物标志物以及与不同环境雌激素相应的生物转化酶,阐述了卵黄蛋白原、精子DNA损伤、细胞色素P450、谷胱甘酞S-转移酶及黄素单加氧酶等的生物化学响应原理、应用范围以及国内外最新研究进展.针对真实环境的雌激素复合污染现状,筛选一系列互补、敏感、准确、高效的生物标志物,研究它们的变化规律及其相互关系将有利于揭示环境雌激素的致毒机理,并在污染环境早期诊断和生态风险评价中发挥重要作用.  相似文献   

2.
Comparing resource pulses in aquatic and terrestrial ecosystems   总被引:3,自引:0,他引:3  
Nowlin WH  Vanni MJ  Yang LH 《Ecology》2008,89(3):647-659
Resource pulses affect productivity and dynamics in a diversity of ecosystems, including islands, forests, streams, and lakes. Terrestrial and aquatic systems differ in food web structure and biogeochemistry; thus they may also differ in their responses to resource pulses. However, there has been a limited attempt to compare responses across ecosystem types. Here, we identify similarities and differences in the causes and consequences of resource pulses in terrestrial and aquatic systems. We propose that different patterns of food web and ecosystem structure in terrestrial and aquatic systems lead to different responses to resource pulses. Two predictions emerge from a comparison of resource pulses in the literature: (1) the bottom-up effects of resource pulses should transmit through aquatic food webs faster because of differences in the growth rates, life history, and stoichiometry of organisms in aquatic vs. terrestrial systems, and (2) the impacts of resource pulses should also persist longer in terrestrial systems because of longer generation times, the long-lived nature of many terrestrial resource pulses, and reduced top-down effects of consumers in terrestrial systems compared to aquatic systems. To examine these predictions, we use a case study of a resource pulse that affects both terrestrial and aquatic systems: the synchronous emergence of periodical cicadas (Magicicada spp.) in eastern North American forests. In general, studies that have examined the effects of periodical cicadas on terrestrial and aquatic systems support the prediction that resource pulses transmit more rapidly in aquatic systems; however, support for the prediction that resource pulse effects persist longer in terrestrial systems is equivocal. We conclude that there is a need to elucidate the indirect effects and long-term implications of resource pulses in both terrestrial and aquatic ecosystems.  相似文献   

3.
Based on cybernetic categories of natural control mechanisms, four generations of ecosystem models are distinguished: feed-forward, feedback, self-adaptation and self-organization models. The analysis of the natural control mechanisms in aquatic ecosystems suggests that different processes are controlled in different ways, and, although the four mechanisms were identified in historical sequence, they all operate simultaneously. The concept of self-organization of an ecosystem is introduced and specified for a model of an aquatic pelagic ecosystem. The concept of the ecosystem as a multilayer, multigoal and multiechelon hierarchical system with hierarchy of the levels of biological organization is also introduced.  相似文献   

4.
Based on cybernetic categories of natural control mechanisms, four generations of ecosystem models are distinguished: feed-forward, feedback, self-adaptation and self-organization models. The analysis of the natural control mechanisms in aquatic ecosystems suggests that different processes are controlled in different ways, and, although the four mechanisms were identified in historical sequence, they all operate simultaneously. The concept of self-organization of an ecosystem is introduced and specified for a model of an aquatic pelagic ecosystem. The concept of the ecosystem as a multilayer, multigoal and multiechelon hierarchical system with hierarchy of the levels of biological organization is also introduced.  相似文献   

5.
Size-selective grazing on bacterioplankton by phagotrophic nanoflagellates was analyzed and modelled. The proposed model resembles a Monod equation (Michaelis-Menten-like expression) in which clearance rates by heterotrophic nanoflagellates depend on bacterioplnnkton biovolume. Larger bacteria were ingested faster than smaller bacteria. The proposed model was in agreement with experimental data from different authors, both from cultures and natural assemblages. Size-selective grazing efficiency was analyzed as the ability of phagotrophic nanoflagellates to discriminate between cells differing in volume by a factor of two, e.g., corresponding to dividing and nondividing bacteria. Unlike previously published models, the proposed model suggests that phagotrophic nanoflagellates could be highly effective size-selective grazers for small bacteria (<0.1 m3), which are the most common bacterial sizes in planktonic systems. However, phagotrophic nanoflagellates were unable to size-discriminate dividing and nondividing bacteria for volumes >0.1 m3. These results strongly support the hypothesis that heterotrophic nanoflagellate grazing, by discriminating between different sizes of dividing and nondividing bacteria, may actually be regulating bacterial size and growth rate in natural aquatic ecosystems.  相似文献   

6.
7.
AQUATOX combines aquatic ecosystem, chemical fate, and ecotoxicological constructs to obtain a truly integrative fate and effects model. It is a general, mechanistic ecological risk assessment model intended to be used to evaluate past, present, and future direct and indirect effects from various stressors including nutrients, organic wastes, sediments, toxic organic chemicals, flow, and temperature in aquatic ecosystems. The model has a very flexible structure and provides multiple analytical tools useful for evaluating ecological effects, including uncertainty analysis, nominal range sensitivity analysis, comparison of perturbed and control simulations, and graphing and tabulation of predicted concentrations, rates, and photosynthetic limitations. It can represent a full aquatic food web, including multiple genera and guilds of periphyton, phytoplankton, submersed aquatic vegetation, invertebrates, and fish and associated organic toxicants. It can model up to 20 organic chemicals simultaneously. (It does not model metals.) Modeled processes for organic toxicants include chemodynamics of neutral and ionized organic chemicals, bioaccumulation as a function of sorption and bioenergetics, biotransformation to daughter products, and sublethal and lethal toxicity. It has an extensive library of default biotic, chemical, and toxicological parameters and incorporates the ICE regression equations for estimating toxicity in numerous organisms. The model has been implemented for streams, small rivers, ponds, lakes, reservoirs, and estuaries. It is an integral part of the BASINS system with linkage to the watershed models HSPF and SWAT.  相似文献   

8.
9.
Geologic processes strongly influence water and sediment quality in aquatic ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies. We test if elevated concentrations of metals in water and sediment are restricted to streams downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments classified as "historically mined" or "unmined," and based on mineral-deposit criteria, to determine whether water and sediment quality were influenced by naturally occurring mineralized rock, by historical mining, or by a combination of both. By accounting for different geologic sources of metals to the environment, we were able to distinguish aquatic ecosystems limited by metals derived from natural processes from those due to mining. Elevated concentrations of metals in water and sediment were not restricted to mined catchments; depauperate aquatic communities were found in unmined catchments. The type and intensity of hydrothermal alteration and the mineral deposit type were important determinants of water and sediment quality as well as the aquatic community in both mined and unmined catchments. This study distinguished the effects of different rock types and geologic sources of metals on ecosystems by incorporating basic geologic processes into reference and baseline site selection, resulting in a refined assessment. Our results indicate that biomonitoring studies should account for natural sources of metals in some geologic environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in mining-impacted drainages there may have been high pre-mining background metal concentrations.  相似文献   

10.
11.
Ten sampling points were selected in Kanhan River, situated near the ash dump sites of Koradi Thermal Power Plant, Nagpur. The leaching of trace elements from fly ash dumps was experimentally determined by acid digestion, batch leaching and toxicity characteristic leaching procedure tests. Elemental concentrations in river water, sediment, plankton and five commonly prevailing fish species (Catla catla, Labeo bata, Cyprinus carpio, Cirrhinus reba, Puntius ticto) were determined using a Flame Atomic Absorption Spectrophotometer during the pre-monsoon and post-monsoon seasons. Metal concentrations (Cr, Mn, Zn, Cu, Fe, Ni, Cu and Pb) in river water were higher during the pre-monsoon season compared to the post-monsoon season. Zn (30.65?mg/kg) was observed to be the most predominant metal in plankton during the pre-monsoon season while, during the post-monsoon season, Fe (21.19?mg/kg) showed the maximum concentration. Muscles of C. catla had metal concentrations (Cr, Mn, Zn, Fe, Cu and Pb) above the permissible limits of Food and Agricultural Organization (FAO 1983) during the pre-monsoon season. Bioaccumulation factor (BAF) was found highest for Cr (37.5) in muscles of C. catla during the pre-monsoon season, while BAF was observed to be maximum in L. bata for Cu (28.09), which may be detrimental for human consumption.  相似文献   

12.
Environmental Fluid Mechanics - Aquatic vegetation is ubiquitous in lowland rivers, and it is typically present in the shape of spatial self-organized patches of biomass. In this work, we...  相似文献   

13.
This article serves as an introduction to this special issue of Marine Biology, but also as a review of the key findings of the AQUASHIFT research program which is the source of the articles published in this issue. AQUASHIFT is an interdisciplinary research program targeted to analyze the response of temperate zone aquatic ecosystems (both marine and freshwater) to global warming. The main conclusions of AQUASHIFT relate to (a) shifts in geographic distribution, (b) shifts in seasonality, (c) temporal mismatch in food chains, (d) biomass responses to warming, (e) responses of body size, (f) harmful bloom intensity, (f), changes of biodiversity, and (g) the dependence of shifts to temperature changes during critical seasonal windows.  相似文献   

14.
15.
Forty-six trace elements in coastal Casuarina equisetifolia plant–soil systems at nine sampling sites on Hainan Island were analyzed using ICP-MS. The relationships among the trace elements of the same group or the same periodicity of the Periodic Table in the plants and soils were complex and no consistent patterns were found. More combinations of elements occurred with high positive correlation coefficients within the same periodicity than within the same group of the Periodic Table, and there were more high positive correlations in soils than in plants. However, there were many element combinations in Block d (transition elements) with high positive correlation coefficients in plants. Markedly high positive correlation coefficients between individual rare earth elements and Y and among Zr, Nb, Cd existed in both plants and soils. The dendrograms obtained by cluster analysis show that rare earth elements had very similar occurrence and distribution in both soils and plants. Thus, they behaved as a coherent group of elements both geochemically and biogeochemically. The transition elements were more coherent in plants than in soils.  相似文献   

16.
A system of ordinary differential equations is presented as being appropriate for modelling the impact of stress on the temporal behaviour of certain components within an ecosystem. The modelling problem is fist discussed in general terms and then in terms specifically relating to the impact of recreational activities (hunting, fishing, sightseeing, etc.) on a coniferous forest ecosystem.Using crude data, the model is used to simulate over a 3-year period the biomass levels of four compartments of the ecosystem (viz, timber, deer, fish and forage) in the absence of recreational activities. These results are then contrasted with simulation results obtained by introducing a “moderate” and then “high” degree of recreational activity, as well as the response of the system under moderate recreation to management strategies involving the construction of dams and the harvesting of timber.  相似文献   

17.
Some intrinsic properties of differential equation models of ecosystems are formulated. The properties, which are long-termed, are classified into fundamental, stability, and sensitivity substructures. An aspect of the ecological term “resilient” — asymptotic stability uniformly for all small parameter variations — is introduced in a mathematical setting. In the sensitivity substructure, bounded sensitivity and continuity of sensitivity with respect to solutions are recognized as intrinsic properties. Illustrations of these two properties are given.  相似文献   

18.
Within the natural world, diversity refers to the variety and variability among living organisms and the ecological complexes in which they occur. Its complexity is measured in terms of variations at genetic, species and ecosystem levels. It plays a critical role in meeting human needs while maintaining the ecological processes upon which our survival depends. This paper agues that such a natural metaphor should be considered in industrial systems in order to realise sustainable development. This article begins by describing natural biodiversity, emphasising its definition and value, and its maintenance. Next, the paper discusses the rationale and mechanisms for encouraging industrial diversity. The authors suggest that this natural metaphor provides a useful guide on how businesses in an industrial system can evolve towards greater resilience and sustainability.  相似文献   

19.
Estuaries and coastal lagoons are characterized by a strong spatial and temporal variability of physicochemical characteristics and productivity patterns. In these environments, the magnitude and direction of the ecological responses to inorganic nutrient increase (i.e. eutrophication) are difficult to predict. In the framework of the project, New Indicators of Trophic state and environmental quality of marine coastal ecosystems and transitional environments (NITIDA), we analysed benthic indicators of trophic state, ecosystem efficiency, and environmental quality in four different transitional environments. The trophic state of the sediments was assessed in terms of quantity and bioavailability of sediment organic C pools; ecosystem efficiency was determined in terms of the prokaryote efficiency in exploiting enzymatycally degraded organic C; environmental quality was determined in terms of meiofaunal diversity. Here, we provide a synopsis of the results obtained and a meta-analysis of the scores assessments obtained using the different ecological indicators of environmental quality and demonstrate that trophic state, ecosystem efficiency, and biodiversity in transitional ecosystems are closely linked. We conclude that the assessment of the environmental quality of transitional ecosystems should be based upon a battery of trophic state indicators and 'sensors' of ecosystem functioning, efficiency, and quality.  相似文献   

20.
Nitrogen saturation in stream ecosystems   总被引:2,自引:0,他引:2  
Earl SR  Valett HM  Webster JR 《Ecology》2006,87(12):3140-3151
The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号