共查询到16条相似文献,搜索用时 78 毫秒
1.
以壬基酚(nonylphenol,NP)为目标污染物,采用批量实验法研究其在添加不同温度制备的小麦秸秆生物炭的黄土中的吸附动力学、吸附热力学,以及粒径、pH等影响因素.结果表明,不添加生物炭黄土吸附NP的快反应时间为10 h,而加入生物炭后,黄土对NP吸附的快反应时间缩短,为6 h;且快反应阶段添加生物炭黄土明显比不添加生物炭黄土对NP的吸附量多,但碳化温度不同的生物炭在此阶段吸附量差别较小.黄土和添加生物炭黄土对NP的吸附平衡时间均为16 h且符合准二级动力学模型.无论是否添加生物炭,NP在黄土上的热力学吸附过程都较好地符合Freundlich等温吸附模型,符合L-型吸附等温模式;随着系统温度的升高,黄土和添加生物炭的黄土对NP的饱和吸附量都呈增大趋势;NP的吸附自由能ΔGθ0,焓变ΔHθ0,熵变ΔSθ0,表明此吸附是一个自发吸热且混乱程度增大的吸附过程.在同一温度下,随着生物炭碳化温度的升高,NP在添加生物炭黄土中的吸附量逐渐增大.添加生物炭黄土的粒径越小,对NP的吸附量越大.pH值为4~7时,添加生物炭黄土吸附量随pH值的增大而增加;pH为7~10时,吸附量又随pH值增大而减小;表明添加生物炭黄土在中性范围内对NP的吸附效果最好,酸性和碱性都不利于NP的吸附. 相似文献
2.
不同热解及来源生物炭对西北黄土吸附敌草隆的影响 总被引:2,自引:1,他引:2
以西北黄土为研究对象,采用批量法研究不同温度下制得的生物炭对西北黄土吸附敌草隆的影响.结果表明,敌草隆在添加不同质生物炭黄土上的动力学吸附过程较好地符合准二级吸附动力学模型,且吸附过程主要分为快吸附(0~8 h)和慢吸附(8~12 h)两个阶段,在12 h左右达到平衡;热力学较好地符合Freundlich等温吸附模型;添加生物炭的黄土对敌草隆的吸附量随着温度的升高而增大,且吸附过程中ΔG~θ小于0,ΔH~θ和ΔS~θ大于0;不加生物炭的黄土对敌草隆吸附量则随着温度的升高而降低,且吸附过程中ΔG~θ和ΔH~θ小于0,ΔS~θ大于0;在体系温度范围内,E(吸附平均自由能)为1.29~5.00 k J·mol-1,表明无论是否添加生物炭,黄土对敌草隆的吸附都以物理吸附为主.其影响因素分析结果显示,随着生物炭热解温度的升高,溶液中敌草隆的平衡浓度降低,平衡吸附量增大;添加生物炭的黄土对敌草隆吸附量在0.5~6 mg·L-1浓度范围内快速上升,之后吸附量随初始浓度的升高缓慢增加并逐渐趋于平衡;溶液pH对黄土吸附敌草隆有一定影响,但影响不大. 相似文献
3.
选择苯甲腈为目标污染物,研究添加不同热解温度制备小麦秸秆生物碳对黄土吸附苯甲腈的影响. 研究表明:不加生物炭黄土对苯甲腈的吸附约8h达到平衡,而加入生物炭后,黄土对苯甲腈的吸附时间缩短,并随着加入生物炭热解温度的升高,吸附平衡时间缩短越明显,同时,黄土对苯甲腈的饱和吸附量也显著增加;添加生物炭黄土对苯甲腈的动力学吸附数据显示较好的符合了准二级动力学方程;无论是否添加生物炭,苯甲腈在黄土上的吸附都符合Freundlich吸附的等温模型,随系统温度升高,添加生物炭黄土对苯甲腈的饱和吸附量也显著增加,表明该吸附过程为吸热反应;苯甲腈在黄土上的吸附等温线符合C-型吸附等温模式. 计算结果显示,平均吸附自由能E介于1.865~3.171kJ/mol,表明苯甲腈在黄土上的吸附,无论是否添加生物炭,都以物理吸附为主;热力学参数计算结果显示,无论是否添加生物炭,黄土对苯甲腈的吸附过程中吉布斯自由能ΔGθ均小于0、熵变ΔSθ和焓变ΔHθ均大于0,表明土壤对苯甲腈的吸附为自发进行的吸热过程. 研究结果说明,添加生物炭黄土对苯甲腈的吸附过程包含表面吸附和颗粒内部扩散、外部液膜扩散等机制. 相似文献
4.
生物炭对三氯生的吸附热动力学研究 总被引:1,自引:0,他引:1
以玉米秸秆、皇竹草和花生壳为原料制备成玉米秸秆生物炭(BCcs)、皇竹草生物炭(BCn)、花生壳生物炭(BCps),采用CEC、等电点滴定,表面官能团分析,元素分析、FT-IR、扫描电镜等方法对3种生物炭进行表征,采用单因素静态吸附实验方法考察了生物炭吸附三氯生的主要影响因素.结果表明:CEC和表面官能团数量排序为BCcsBCnBCps,BCcs极性和亲水性更强,孔结构发育更加完善,其次是BCn,BCps的极性和亲水性最弱,孔隙极少.3种生物炭对三氯生的吸附去除率均随着三氯生初始浓度的升高而升高,随着温度的升高而降低,酸性更有利于吸附实验的进行.低离子强度有利于BCcs和BCn吸附三氯生,BCps则相反.在10、25、40℃3种温度下,3种生物炭对三氯生的吸附均更符合准二级反应动力学,Freundilich等温方程和Langmuir等温方程都能描述这3种生物炭对三氯生的吸附行为,吸附反应属于自发、放热反应.吸附机制主要为物理吸附,生物炭与三氯生之间无化学键、配位基交换等强作用力. 相似文献
5.
6.
生物炭结构性质对氨氮的吸附特性影响 总被引:4,自引:3,他引:4
氨抑制现象在富含有机氮底物的沼气工程中普遍存在,采用生物炭吸附法可固定发酵液中氨氮.为探究生物炭理化结构与氨氮吸附特性之间的相关关系,在不同热解温度(350、450和550℃)下制备以玉米秸秆、稻壳为原料的生物炭,通过元素分析、FTIR和BET等分析生物炭结构及其理化性质,并结合批式吸附实验,研究不同理化性质生物炭对氨氮的吸附特性影响.结果表明随着热解温度的升高,生物炭中碳及灰分含量增多; 450℃制备的玉米秸秆生物炭(CS450)与550℃制备的稻壳生物炭(RH550)对氨氮的吸附分别遵循准二级和准一级动力学模型.Freundlich吸附模型能更好地描述CS450和RH550生物炭对氨氮的等温吸附过程;玉米秸秆炭吸附量与其表面官能团间具有显著相关性;而与稻壳炭的吸附量相关性最显著的为生物炭的比表面积,其次是表面官能团,最后是灰分.其中,RH550吸附性能最好,最大吸附量为12. 16 mg·g~(-1). 相似文献
7.
秸秆生物炭对双氯芬酸钠的吸附性能研究 总被引:3,自引:0,他引:3
利用廉价的农业废弃物稻草秸秆,通过磷酸氢二铵((NH4)2HPO4)活化制备得到秸秆生物炭(SBC),通过扫描电子显微镜(SEM)、比表面积分析(BET)、红外光谱(FTIR)等手段对其进行表征.研究了SBC对双氯芬酸钠(DCF)的吸附去除,并探讨了吸附时间、SBC投加量、pH值、阴离子浓度对吸附过程的影响.结果表明,当SBC投加量为0.3g/L时,DCF浓度为0.05mmol/L,60min后吸附量达到平衡;pH值范围在5.00~9.00时,SBC对DCF的吸附量去除率随着pH值的增加而减少;Cl-、SO42-和HCO3-对吸附过程的影响不大.拟合结果表明,SBC对DCF的吸附过程更符合准二级动力学模型和Freundlich吸附等温线.经Langmuir等温线模型计算理论最大吸附量为277.78mg/g(pH=7.00,T=20℃).热力学参数表明SBC对DCF的吸附是自发吸热过程.同活性炭和碳纳米管相比,SBC对DCF的吸附效果更好. 相似文献
8.
牛粪生物炭对水中氨氮的吸附特性 总被引:7,自引:14,他引:7
以牛粪生物炭为吸附剂,研究了p H、粒径、投加量、温度和共存阳离子等因素对牛粪生物炭吸附氨氮的影响及吸附特性.结果表明,共存阳离子Na+、Ca2+的存在对牛粪生物炭吸附氨氮有抑制作用,在Na+、Ca2+浓度相同条件下对氨氮吸附影响大小顺序为Na+Ca2+;牛粪生物炭吸附氨氮的最佳初始p H值应在5~8范围;通过对动力学数据进行分析,发现准二级动力学方程(R2=0.967 3)比准一级动力学方程(R2=0.765 9)和Elovich方程(R2=0.724 9)能更好地拟合动力学数据,颗粒内扩散方程拟合结果发现牛粪生物炭对氨氮的吸附包括表面吸附和颗粒内扩散两个过程.吸附等温线拟合发现Freundlich方程(R2=0.976 2)能很好地描述氨氮在牛粪生物炭上的吸附行为.吉布斯自由能变化(ΔGθ)、焓变(ΔHθ)和熵变(ΔSθ)的计算结果表明,牛粪生物炭对氨氮的吸附是自发的吸热过程. 相似文献
9.
10.
以山羊粪便为原料,在300℃和700℃缺氧热解条件下制备生物炭,分别记为D300和D700。使用扫描电镜表征生物炭结构特征,运用比表面积仪测定其比表面积和孔径大小,以此探究不同热解温度条件下羊粪生物炭的内部结构及比表面积特征。以水体氨氮(20 mol/L)为目标污染物,以D300和D700为吸附剂,研究不同氨氮浓度、温度、pH以及吸附剂投加量等因素对水体氨氮吸附的影响以及吸附特性。结果表明:热解温度从300℃上升到700℃,生物炭的比表面积、总孔容随之增大,平均孔径反之减小,吸附效率从15.72%提升到24.73%。羊粪生物炭吸附水体氨氮的最佳pH在6~8;通过对动力学数据进行分析,发现准二级动力学方程(R~2=0.999 1)比准一级动力学方程(R~2=0.663 3)能更好地拟合动力学数据。吸附等温曲线拟合发现Langmuir方程(R~2=0.842 74)能更好地描述氨氮在羊粪生物炭上的吸附行为。吉布斯自由能变化、焓变和熵变的计算结果表明:羊粪生物炭对氨氮的吸附过程是自发的吸热过程。700℃条件下制备的羊粪生物炭比D300拥有更好的吸附性能。 相似文献
11.
为研究添加秸秆焚烧物对黄土吸附环境激素的影响,以五氯酚(PCP)为目标污染物,采用批量实验法研究了PCP在黄土与添加秸秆焚烧物黄土上的吸附动力学、吸附热力学以及初始浓度、离子强度、粒径、pH值等影响因素.结果表明:添加秸秆焚烧物促进黄土对PCP的吸附,黄土与添加秸秆焚烧物黄土的动力学均较好的符合准二级动力学模型;其热力学吸附过程均更符合Freundlich吸附模型,且吸附等温线符合C-型;温度在25~45℃时,PCP在黄土与添加秸秆焚烧物黄土上的吸附平均自由能(E)小于8kJ/mol,说明其对PCP的吸附主要以物理吸附为主;PCP的吉布斯自由能ΔGθ、焓变ΔHθ和熵变ΔSθ均小于0,表明该吸附属于自发放热且混乱度减小的过程;当pH值在3~7范围内时,PCP的吸附量随pH值升高而逐渐减小,而pH值在7~10范围内时,其吸附量逐渐增大;黄土对PCP的吸附量随其粒径的减小而增大;离子相同时,其浓度越高越有利于PCP的吸附;离子浓度相同时,黄土对PCP的吸附量随其价态的升高而增加. 相似文献
12.
不同热解条件下合成生物炭对铜离子的吸附动力学研究 总被引:6,自引:3,他引:6
为了揭示生物质炭对铜离子的吸附动力学特性,研究了以不同条件下合成的生物质炭作为吸附剂吸附铜离子的动力学过程.用生活中常见的玉米芯和龙爪槐为原材料,以限氧升温炭化法制备生物炭.表征了其结构和表面特征,又通过一系列批实验,研究不同热解温度(300、400、500、600和700℃)和不同热解时间(1、2、4、6、8 h)的玉米芯与龙爪槐生物炭对Cu~(2+)的吸附动力学特征与机理.结果表明,生物炭对Cu~(2+)的吸附动力学数据随时间的变化能很好的用准二级动力学方程进行拟合,可见生物炭对Cu~(2+)的吸附是复杂的,不是单一的单层吸附.同时用颗粒内扩散模型、班厄姆方程和Boyd外扩散模型进行分析,结果表明颗粒内扩散不是两种生物炭吸附铜离子的唯一速率控制步骤,液膜扩散和颗粒内扩散均在吸附过程中起到重要影响,且液膜扩散是主要的限速因素. 相似文献
13.
羊粪生物炭对水体中诺氟沙星的吸附特性 总被引:3,自引:0,他引:3
以羊粪为原料分别在350、450、550、650℃条件下制备生物炭,通过元素分析、BET-N_2、电镜扫描及FTIR表征了不同热解温度下羊粪生物炭的结构特征,并采用序批实验研究了pH、生物炭投加量、热解温度、初始浓度等因素对羊粪生物炭吸附水体中诺氟沙星(NOR)的影响及吸附机制.结果表明,随着热解温度的升高,生物炭的比表面积、总孔容、平均孔径增大,芳香性和稳定性也有所提高.羊粪生物炭吸附NOR的最佳初始pH为6.0,吸附在180 min左右达到平衡,采用准二级动力学模型能更好地拟合动力学数据(R~20.96),吸附速率由表面吸附和颗粒内扩散共同控制.等温吸附拟合发现,Langmuir模型能较好地描述NOR在羊粪生物炭上的吸附行为(R~20.93),吸附过程均为有利吸附,且可能与氢键和π-π键作用密切相关,4种热解温度下生物炭的吸附能力大小为:650℃550℃450℃350℃.吸附过程中ΔGθ0、ΔHθ0、ΔSθ0,表明羊粪生物炭对NOR的吸附是自发、吸热及熵增加的过程.650℃和550℃条件下制备的羊粪生物炭可作为水体中NOR的优势吸附材料. 相似文献
14.
15.
不同温度桉树叶生物炭对Cd2+的吸附特性及机制 总被引:2,自引:0,他引:2
通过元素分析、BET-N2、Zeta电位、Boehm滴定,SEM-EDS、FTIR等分析方法对不同热解温度(300、500和700℃)下制备的桉树叶生物炭进行表征,研究了3种生物炭(BC300、BC500和BC700)对Cd2+的吸附特性与机制.结果表明,随温度升高,生物炭产率下降,灰分、pH值和Zeta负电荷量上升,比表面积增大.当Cd2+浓度为20mg/L时,平衡时间依次为80min(BC700)<360min(BC500)<540min(BC300),均符合准二级动力学模型(R2>0.98),以化学吸附为主.BC300和BC500吸附过程均符合Langmuir和Freundlich模型,BC700更符合Freundlich模型,最大吸附量依次为BC700(94.32mg/g) > BC500(67.07mg/g) > BC300(60.38mg/g).在Boehm滴定结果分析的基础上,结合FTIR和SEM-EDS,表明生物炭吸附机制主要为静电吸附和官能团络合作用.BC700吸附性能最佳,原因可能是具有较大的比表面积、较多的负电荷量和较为丰富的官能团. 相似文献
16.
磁性生物炭对水体中对硝基苯酚的吸附特性 总被引:2,自引:0,他引:2
为了制备同时具备磁分离和优良吸附性能的环境友好吸附材料,以棉花秸秆为生物质原料制备生物炭(CSBC),采用共沉淀法制得磁性棉花秸秆生物炭(MCSBC).通过元素分析、SEM、XRD、XPS、FTIR和VSM等对MCSBC进行表征,研究了CSBC和MCSBC对水中对硝基苯酚(PNP)的吸附特性.结果表明,溶液pH值对CSBC和MCSBC吸附PNP的影响较大,在酸性条件下的吸附量更大.CSBC和MCSBC对PNP的吸附动力学过程可被准二级动力学模型很好地描述,吸附过程包括液膜扩散和颗粒内扩散两个阶段.Langmuir、Freundlich和Sips模型都可以很好地描述PNP在CSBC和MCSBC上的吸附行为,最大吸附量分别为44.54和48.94mg/g,MCSBC相较于CSBC对PNP的吸附具有更好的效果.热力学研究结果表明,CSBC和MCSBC对PNP的吸附过程为熵增加的自发吸热过程.再生试验结果表明,经6次吸附-解吸循环后,MCSBC对PNP的吸附容量仍能达到初始吸附量的82%. 相似文献