首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
巢湖西部河口区沉积物氮磷分布特征与原位扩散通量估算   总被引:1,自引:0,他引:1  
选取巢湖西部重污染入湖河口区,研究表层沉积物氮磷污染特征,并运用Fick定律估算沉积物-水界面氮磷原位扩散通量.结果表明:南淝河、派河、十五里河河口表层沉积物总氮平均含量达到2208.17 mg·kg~(-1),氮形态以有机氮为主,占比达到90%以上.表层沉积物总磷平均含量为704.59 mg·kg~(-1),其中铁铝结合磷、活性有机磷和钙镁结合磷分别占比27%、28%和18%.河口区水体氨氮浓度从上覆水到孔隙水中总体呈上升趋势,沉积物表层(0~5 cm)孔隙水中氨氮平均浓度为25.42 mg·L~(-1),是上覆水中的7倍.沉积物孔隙水中硝氮与正磷酸盐浓度在垂向上随深度的增加呈先上升后降低的趋势,在沉积物-水界面附近达到浓度最高值.3个河口沉积物孔隙水中氮磷营养盐均向上覆水扩散,其中氨氮扩散通量分别为25.87、74.85与18.08 mg·m~(-2)·d~(-1).硝氮与正磷酸盐扩散通量较低,范围分别在1.38~2.78和0.011~0.024 mg·m~(-2)·d~(-1)之间.总体上看,巢湖西部河流入湖河口区表层沉积物氮污染严重,且存在较高的氮磷营养盐释放风险,应是巢湖富营养化控制过程中重点关注的区域.  相似文献   

2.
南四湖湿地沉积物及孔隙水基本特性研究   总被引:11,自引:6,他引:5  
古小治  张雷  柏祥  范成新 《环境科学》2010,31(4):939-945
利用平衡式孔隙水采样技术Pore Water Equilibrators(Peeper)来获得沉积物的孔隙水剖面,研究了南四湖湿地芦苇、香蒲沉积物的理化性质对孔隙水营养盐的垂向分布特征及其扩散通量的影响.结果表明,通过种植芦苇和香蒲,沉积含水量、孔隙度及交换态的氨氮、硝态氮含量均较无植物的对照区有明显提高.在2~5cm亚表层,芦苇区和香蒲区孔隙度分别提高了57.5%和34.6%.在沉积物-水界面附近,孔隙水中氨氮和可溶性磷酸盐浓度随剖面深度的增加呈指数关系增长,在沉积物6~8cm左右达到最大值.运用Fick第一定律对孔隙水营养盐的扩散通量进行估算,发现芦苇较香蒲更能有效地抑制孔隙水中氨氮的再次释放,从对照区的最高值3.57~4.48mg/(m2.d)降低0.90~1.24mg/(m2.d);磷酸根扩散通量3个区域的数值相差不大,在0.02~0.04mg/(m2.d)间波动;硝态氮3个区域均表现为上覆水向间隙水中扩散.相关分析结果表明,沉积物中交换态营养盐含量与孔隙水中含量呈显著正相关关系,因此控制营养盐的可交换态含量可能是防止湿地沉积物营养盐二次污染的有效途径之一.  相似文献   

3.
沉积物-水体界面处分子扩散是污染物的一个重要地球化学过程,也是判断沉积物是否为上层水体中污染物汇或源的主要依据.本研究利用低密度聚乙烯膜(LDPE)为吸附相的原位被动采样器,同步确定了巢湖西半湖南淝河入湖口处不同深度的上层水体和沉积物孔隙水中13种多环芳烃(PAHs)浓度,并计算了它们在沉积物-水体界面的分子扩散通量.结果表明,3种性能参考化合物(PRCs)在上层水体中的解析速率较沉积物孔隙水中大,相应地,水体中LDPE膜对PAHs的吸附速率高于沉积物孔隙水.水体中13种PAHs总浓度(130~250 ng·L~(-1))低于沉积物孔隙水(180~253 ng·L~(-1)),且均以低环PAHs为主.2~3环PAHs浓度在上层水体中无明显的垂直变化,但4~6环PAHs浓度呈现随深度增加而降低的趋势.沉积物孔隙水中PAHs浓度的垂直变化规律反映了历史强排放过程.研究区域PAHs在沉积物-水体界面的交换通量变化范围为-384~1445 ng·m~(-2)·d~(-1),除Flu和Pyr外,其它PAHs均从沉积物向水体释放,反映了底部沉积物是上层水体中PAHs的重要二次污染源.  相似文献   

4.
黄东海表层沉积物中磷的分布特征   总被引:3,自引:0,他引:3  
于2011年3~6月分两个航次在黄东海采集了表层沉积物样品,测定了其中总磷(TP)、无机磷(IP)和有机磷(OP)的含量.结果表明,TP的变化范围为10.50~24.10μmol·g-1,IP的变化范围为7.14~17.10μmol·g-1,IP是TP的主要赋存形态,平均占TP的70%以上;黄东海大部分站位IP与TP的百分比在50%~90%之间,有4个站位的百分比高于90%,都分布在东海.沉积物中磷的含量和平面分布特征受到人类活动、物质来源、沉积物的粒度、沉积环境和水文条件等多种因素的影响.黄东海沉积物中总磷的埋藏通量呈现出区域性的差异,埋藏通量主要受沉积速率、沉积物的孔隙度和底层水含氧量等多种因素的影响,其中沉积物中总磷的含量和沉积速率是决定埋藏通量大小的关键因素.  相似文献   

5.
水华生消过程对巢湖沉积物微生物群落结构的影响   总被引:7,自引:6,他引:1  
水华对湖泊水体和沉积物理化和生物学性质的影响已进行了较多研究,但鲜见水华生消过程对湖泊沉积物微生物群落结构的影响.本研究以巢湖为对象,通过PCR-DGGE方法分析了水华形成、持续和消亡阶段对沉积物微生物群落结构的影响.结果表明,巢湖水华形成期为5月15日~6月20日,持续期为6月20日~9月5日,之后进入水华消亡期.PCR-DGGE分析表明,非水华区沉积物微生物的种类、Shannon-Wiener指数、Simpson指数随时间变化较小,微生物相似度较高,温度可能是影响非水华区微生物群落结构波动的主要因子;在水华区,沉积物微生物的种类、Shannon-Wiener指数在水华形成期和消亡期较低,在水华持续期较高,而Simpson指数则呈相反趋势,微生物相似度相对较低,表明水华形成、持续和消亡过程对微生物群落结构、优势种有不同影响,温度和水华导致的水体性质变化可能是沉积物微生物变化的主要因子.本研究表明,水华生消过程对湖泊沉积物微生物有不同的影响,这对深入评价水华对湖泊水生生态系统的影响和利用微生物防治湖泊水华有重要意义.  相似文献   

6.
淀山湖沉积物孔隙水中重金属元素分布特征   总被引:13,自引:0,他引:13  
用原子吸收光谱仪测定了淀山湖上覆水体和沉积物孔隙水中Pb、Cu、Cr、Cd、Fe和Mn的浓度.结果表明,上覆水体中及沉积物孔隙水中重金属元素浓度由高到低的顺序,夏季为Fe>Mn>Cr(Cu)>Pb>Cd,冬季为Mn>Fe>Cr(Cu)>Pb>Cd.各种重金属元素在孔隙水中的浓度比上覆水体中的浓度高得多,且在孔隙水中随深度均呈现典型的峰型分布;但随季节的变化,峰值发生位移.重金属元素的浓度在沉积物-水界面处变化明显,夏季沉积物中的Cr对上覆水体水质的影响较大.  相似文献   

7.
巢湖沉积物δ13Corg和δ15N记录的生态环境演化过程   总被引:2,自引:0,他引:2  
通过对巢湖2处柱状沉积物样品中δ13Corg、δ15N、C/N比值、TOC和TN含量的测定,分析了近百年来巢湖沉积物有机质的来源,探讨受人类活动影响的湖泊生产力变化和富营养化过程.结果表明,巢湖沉积物有机质的主要来源是水生藻类,陆生有机质的输入量较少,但是城市污染物的输入与农业面源污染的影响是不可忽视的.巢湖沉积物剖面上,δ13Corg、δ15N、TOC和TN含量变化按沉积深度可以明显划分为2个阶段:①10 cm以下,H3点δ13Corg波动在-21.74‰~-19.34‰的范围内,其余数据表现相对平缓,湖泊内的生物物种是固氮植物和非固氮植物共存,2个采样点具有不同的湖泊营养化进程;②10 cm至表层段,2个部面的δ13Corg迅速减小,δ15N、TOC和TN则是显著增大,巢湖闸的建成使得内源营养物质快速积累,湖泊初始生产力水平迅速提高,富营养化加剧.  相似文献   

8.
深圳茅洲河下游柱状沉积物中碳氮同位素特征   总被引:2,自引:0,他引:2  
对茅洲河下游12根沉积物柱状样中总氮(TN)、有机质(OM)、C/N值、δ~(15)N、δ~(13)C含量进行了测定,分析探讨了茅洲河下游及其主要支流沙井河沉积物中氮和有机质的分布特征及来源.结果表明,沉积物中TN平均含量为1 815.37 mg·kg~(-1),OM平均含量为22 401.68 mg·kg~(-1),与太湖和巢湖流域相比,研究区内TN和OM含量均处于较高水平,且随深度增加变化均较大.茅洲河下游沉积物中δ~(15)N、δ~(13)C含量范围为2.20‰~32.78‰、-27.53‰~-21.95‰,平均值分别为6.78‰、-25.41‰;C/N值范围为0.49~18.23;δ~(13)C随深度变化较为平缓,而δ~(15)N、C/N值随深度增加波动较大.研究区来源分析表明:C3植物与合成化肥为茅洲河下游表层沉积物(0~40 cm)的主要来源;藻类是深层沉积物与支流沙井河沉积物中有机质的主要来源.茅洲河下游表层沉积物(0~40 cm)中的氮素主要来源于无机化肥与土壤有机氮,深层沉积物与支流沙井河沉积物中的氮素主要来源于土壤流失和土壤有机氮.  相似文献   

9.
大型浅水湖泊内源营养盐释放的概念性模式探讨   总被引:83,自引:1,他引:82       下载免费PDF全文
通过在太湖开展的风浪与底泥悬浮的野外观测,结合分层采取水样并分析水体中溶解性营养盐的浓度随深度的变化结果,发现在水土界面的上覆水中营养盐浓度有突然增加的现象,指示着沉积物对上覆水营养盐浓度有影响.对沉积物中孔隙水营养盐浓度随深度的变化分析,表明了沉积物孔隙水中营养盐浓度变化与氧化还原环境的关系.结合水动力作用,提出了大型浅水湖泊水动力作用导致底泥悬浮,从而使得底泥中的可溶性营养物质释放这一内源释放的概念性模式.  相似文献   

10.
分析了巢湖表层和柱状沉积物中磷(P)、铁(Fe)和硫(S)元素的形态组成、分布、相互关系及其指示的湖泊环境变化.西半湖S3采样点位柱状沉积物总磷(TP)记录表明,巢湖西半湖区自20世纪60年代开始受人类活动影响逐步明显,其中钙磷(Ca-P)指示的流域径流输入增加早于铁铝磷(Fe/Al-P)指示的居民生活污水输入;西半湖区沉积物15~0cm有机质埋藏持续增加伴随着pH值的逐步升高,指示了水体富营养化导致藻类生产力(光合作用)提高并显著影响pH值;而东半湖S7采样点位柱状沉积物磷形态则记录了东半湖区不同的环境变化特征.巢湖沉积物活性铁组分以Fe (Ⅱ)为主,S3和S7沉积剖面Fe (Ⅲ)/Fe (Ⅱ)值整体均呈上升趋势且与Fe (Ⅲ)同步变化,表明其比值由Fe (Ⅲ)变化驱动;Fe (Ⅲ)/Fe (Ⅱ)指示沉积物上层为弱氧化性,其余层位为还原性环境.沉积物还原性无机硫(RIS)以酸可挥发性硫(AVS)为主,沉积物高有机质含量、低元素硫和还原条件降低了AVS向黄铁矿硫(CRS)的转化.巢湖沉积物中与P,S结合的Fe占比很小,高Fe/P和Fe/S比值会抑制沉积物磷的释放,导致柱状剖面P,Fe和S之间的相互作用关系整体上并不显著.  相似文献   

11.
巢湖表层沉积物中有机氯农药的残留与风险   总被引:5,自引:1,他引:4  
利用GC-MS分析了巢湖14个样点表层沉积物中有机氯农药(OCPs)残留水平,研究了其分布与组成特征、与TOC的关系以及生态风险.结果表明:巢湖表层沉积物中OCPs总含量范围为0.58~32.91ng.g-1(干重),其中六六六类(HCHs)农药含量在0.23~1.81ng.g-1之间,滴滴涕类农药(DDTs)含量在0.34~31.01ng.g-1之间.表层沉积物中HCHs和DDTs平均含量的空间分布特点为:西部湖心>东部水源区>东部湖区(不包括水源区)>河流,狄氏剂和异狄氏剂则主要为巢湖东部湖区和水源区的局部污染.HCHs和DDTs的组成成分分析表明其主要来源于历史残留.OCPs含量与TOC含量之间不存在显著相关关系,说明OCPs在沉积物中的含量还受到其他因素的影响.与共识沉积物质量基准(CB-SQG)相比较,巢湖局部地区表层沉积物存在较大生态风险.  相似文献   

12.
通过紫外吸收光谱(UV-vis)和三维荧光光谱(3D-EEMs),研究典型富营养化湖泊巢湖沉积物溶解性有机质(DOM)光谱时空分布特征.结果表明,巢湖表层沉积物DOM的a(254)含量为13.1~101.7 m-1,平均值为(32.2±16.2)m-1.其中,夏季沉积物a(254)的含量((46.6±25.6)m-1)要显著高于其它季节,且湖心区a(254)平均值和变异性均小于湖滨区.表层沉积物DOM的S275~295值从春季到冬季上随时间呈明显上升趋势.沉积物DOM荧光强度在夏季最高,在垂直剖面上总体呈下降趋势.DOM组分以酪氨酸类蛋白质和溶解性微生物产物为主,各组分在空间分布上无明显差异.巢湖沉积物DOM荧光指数(FI)为2.56~4.89,腐殖化指数(HIX)为0.57~6.78,生物源指数(BIX)为0.31~1.54.巢湖沉积物DOM主要来自于生物源,藻的生长循环会显著影响富营养化湖泊沉积物DOM的来源和性质.  相似文献   

13.
巢湖近代沉积物及其间隙水中营养物的分布特征   总被引:12,自引:2,他引:10  
湖泊沉积物及其间隙水中的营养盐对于研究湖泊营养盐的生物地球化学和湖泊营养状态的历史变化具有重要的作用.系统研究了巢湖东、西湖区沉积物和间隙水中营养盐的剖面分布特征及其营养盐之间的相互关系.结果表明,巢湖近代沉积物中营养盐含量总体上随着深度的增加而降低,上层沉积物(1~15cm)中TOC(总有机碳)、TN(总氮)、TP(总磷)和Pi(无机磷)的含量都表现出明显的区域差异性,从西到东逐渐减小,含量的大小顺序为C1C3C16;东、西湖区下层沉积物(15~30cm)中TOC、TN和TP的含量差异不明显,分别在5mg.g-1、0.5mg.g-1和0.45mg.g-1左右变化;Po(总有机磷)在整个剖面上的分布则相反,总体上从西向东逐渐增大,含量大小顺序为C16C3C1.沉积物间隙水中的营养盐在空间上的分布规律与沉积物相似,西湖区两个点(C1、C3)沉积物间隙水中的营养物浓度总体上高于东湖区的C16点,大小顺序为C1C3C16,间隙水中的氮、磷酸盐、硅酸盐处于协同变化.间隙水中的氮与沉积物总氮含量密切相关;西湖区间隙水中的磷与沉积物磷含量密切相关,但在东湖区相关性不显著.表层沉积物间隙水中营养盐浓度都明显高于上覆水体,表明沉积物中的营养盐是水体营养盐的主要来源之一.  相似文献   

14.
基于逸度方法评价巢湖流域PAHs在水体-沉积物间扩散过程   总被引:2,自引:0,他引:2  
沉积物是污染物的一个重要汇区,同时亦可作为二次污染源释放污染物,因此,研究污染物在沉积物-水体界面的扩散过程对认识污染物的环境归趋及其迁移扩散具有重要意义.先前的研究结果表明,巢湖流域沉积物中高浓度多环芳烃(PAHs)来源于历史上工业废水排放,并且整个流域呈显著的空间差异性,但上层水体中PAHs浓度较为均匀.因此,有理由假设这些污染物在巢湖流域水体-沉积物间扩散交换呈明显的空间差异:即受工业废水污染的沉积物可能成为水体中PAHs的二次污染源,而其它区域沉积物则可能是这些污染物的重要汇.然而对于这些问题的研究目前仍然处于空白.本研究利用49个采样点的数据,通过逸度扩散模型,分别计算水体和沉积物中17种PAHs的逸度(f),并进一步计算它们的逸度分数(ff)值,依此全面认识这些污染物在水体-沉积物间的扩散趋势.结果显示,PAHs的ff值随环数增大而减小,即环数越高的PAHs越倾向于从水体向沉积物扩散.其中,低环(2~3环)PAHs和五环苝(Per)的ff均值都大于0.9,表示其从沉积物向上层水体扩散.多数采样点中、高环(4~6环)PAHs的ff值介于0.1~0.9,表示处于交换平衡,但受工业影响区域则呈现从沉积物向水体扩散的趋势.以Per和苯并[g,h,j]苝(BghiP)为例深入讨论了两种不同来源PAHs在巢湖流域水体-沉积物间扩散的差异性.对于Per而言,ff值空间差异较小,其普遍从沉积物向水体释放,说明沉积物-水体间扩散过程是上层水体中自然来源Per的重要来源.对于BghiP而言,ff值存在明显的空间差异性,受工业污染严重的地区,PAHs更易于从沉积物向水体扩散,而其它区域,BghiP则普遍处于平衡态甚至从水体向沉积物汇集.碳黑能促使PAHs向沉积物扩散,对PAHs的扩散有重要影响,且对高环(5~6环)PAHs扩散的影响更明显.当沉积物中碳黑含量为有机碳含量10%时,巢湖流域一半以上区域的PAHs扩散方向发生了改变.  相似文献   

15.
长江中下游浅水湖泊中总氮及其形态的时空分布   总被引:20,自引:2,他引:20  
分析和比较了长江中下游 3个浅水湖泊———太湖、巢湖和龙感湖夏、秋和冬季沉积物和上覆水中的总氮及其氮形态 ,描述了氮及其各形态在 3个湖泊中的时空分布特征 .结果表明 :空间上 ,无论是在表层沉积物还是在上覆水中 ,太湖中总氮的含量均高于其他 2个湖泊 ,且在太湖和巢湖都呈现西高东低的分布特征 .氨氮在沉积物和上覆水及溶解态硝态氮在上覆水中的分布与总氮分布趋势基本相同 .巢湖沉积物中氨氮浓度所占的比例稍高于太湖和龙感湖 .在不同季节 ,表层沉积物和上覆水中的总氮含量冬季高于秋季和夏季 ,表层沉积物中氨氮浓度在秋季最高 .巢湖和龙感湖上覆水中的溶解态硝态氮在冬季浓度较高 ,而在太湖西北部这种季节差异几乎没有 ,氨氮的浓度季节性差异也不十分明显  相似文献   

16.
巢湖沉积物重金属污染生态风险评价及来源解析   总被引:1,自引:0,他引:1  
为掌握巢湖沉积物中重金属污染现状并定量解析其来源,采用定点采样的方法获得了巢湖沉积物2015~2017年Cu、Zn、Pb、Ni、Cr、Cd、As、Hg等重金属数据,使用反距离加权插值法和风险评价编码法研究了上述重金属的空间分布特征及潜在生态风险,并应用PMF模型解析了其重金属来源,结果表明:巢湖沉积物中As三年含量均值超过了GB15618中规定的碱性水田土壤风险筛选值,而Zn生物可利用形态占比高,生态潜在风险大;巢湖沉积物中各类金属的空间分布与周边交通线位置相契合,主要表现出东西高中部低的状态,巢湖沉积物中总重金属主要来自交通源(43%)、自然源(27%)、农业源(18%)、工业源(12%),交通源贡献最大、自然源占比高于农业源和工业源,表明当前巢湖正处于城市化初始阶段,其重金属污染水平较低。但随着城市化规模的扩大及程度的加深,巢湖沉积物中重金属污染存在逐年加剧的风险。  相似文献   

17.
长江下游主要湖泊沉积物重金属污染及潜在生态风险评价   总被引:4,自引:0,他引:4  
对巢湖、鄱阳湖和太湖表层沉积物中As、Cd、Cu、Hg、Zn、Ni、Cd和Pb等8种重金属污染特征进行了分析,并用Hkanson生态危害指数法评价其生态危害。结果表明,三大湖泊整个湖区中Hg和Cd含量的空间变化均较大,且含量均明显高于深层基准值。潜在生态风险评价结果显示,Hg和Cd所产生的生态风险危害程度在三大湖泊中均较高,为全区湖泊生态风险危害指数的主要贡献者,湖泊的生态风险性从低到高的排序分别是巢湖、太湖、鄱阳湖,巢湖和太湖的生态环境较好,鄱阳湖的生态环境相对较差。  相似文献   

18.
采集梁子湖柱状沉积物,分析其硝氮、亚硝氮、氨氮、总氮和总磷的空间分布特征,并评价其污染程度.结果表明:梁子湖表层沉积物(0~5 cm)总氮、总磷、氨氮、硝氮、亚硝氮的含量范围依次为598~1372 mg·kg~(-1)、323~804 mg·kg~(-1)、60.7~142 mg·kg~(-1)、4.16~31.6 mg·kg~(-1)和0.001~2.29 mg·kg~(-1).湖心区营养盐含量较低,湖区西部营养盐含量高于湖区东南部.人类活动和污染物输入强度对梁子湖表层沉积物营养盐的空间分布特征有较大影响.沉积物硝氮、亚硝氮含量从深层到浅层递增,在2~3 cm处达到峰值,这表明梁子湖流域在该沉积时期的营养物污染较为严重.沉积物5~10 cm深度的氨氮含量为各深度中的最高值,但因水生生物对氨氮的优先吸收作用,其含量均在150 mg·kg~(-1)以下.同一区域的沉积物总氮、总磷含量的垂向变化特征相似,来自地壳释放的磷使得总磷含量的垂向波动幅度远大于总氮,这揭示了梁子湖沉积物中氮、磷的富集很可能来自同源污染物.该流域发达的水产养殖业是导致沉积物中氮、磷富集的原因之一.表层沉积物总氮和总磷的标准指数变化范围分别为1.09~2.49和0.54~1.34,梁子湖环境质量受到氮素的影响更为严重.湖区表层沉积物总氮、总磷的含量范围分别为598~1372 mg·kg~(-1)和323~804 mg·kg~(-1),均已超出我国东部浅水湖泊沉积物的营养物阈值参考范围,对湖泊生态系统构成了一定的威胁,需要格外关注.  相似文献   

19.
沉积物中磷形态与湖泊富营养化的关系   总被引:75,自引:6,他引:69  
应用乙二胺四乙酸法对长江中下游太湖、巢湖和龙感湖等3个湖泊表层沉积物中磷的形态进行连续提取和测定.结果发现,在表层沉积物中,3个湖泊钙磷的百分含量比较接近,占总磷的30%左右,太湖和巢湖铁磷的百分含量显著高于龙感湖,而龙感湖有机磷的相对含量较高,可达40%~50%.这3个湖泊沉积物中有机磷形态差别十分明显,其中太湖沉积物中的有机磷主要以酸可提取有机磷形式存在,巢湖沉积物中酸可提取有机磷约占总有机磷的一半,而龙感湖的有机磷大部分与腐殖酸结合.沉积物中酸可提取有机磷的释放可能又是一个导致湖泊富营养化的重要过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号