首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristics of carbon storage and density in different layers of forest ecosystems should be studied comprehensively and in more detail. Using forest inventory data in combination with field survey data, we explored the characteristics of carbon storage and density in different layers of forest ecosystems in Liaoning Province of China. Results showed that total carbon storage was 813.034 Tg C. The carbon storage of soil layer accounted for 81.0% of the total storage with 658.783 Tg C, followed by those of arbor, litter and shrub layers with 128.403 Tg C (15.8%), 22.723 Tg C (2.8%) and 3.125 Tg C (0.4%), respectively. The average carbon density for the forest ecosystems were 183.571 Mg C ha–1, with soil layer (148.744 Mg C ha–1) being the highest one, followed by arbor layer (28.992 Mg C ha–1), litter layer (5.131 Mg C ha–1) and shrub-grass layer (0.706 Mg C ha–1). Carbon storage in different forest ecosystems varied from 1.595 to 319.161 Tg C, while C density ranged from 165.067 to 235.947Mg C ha–1, with the highest and lowest values being observed in soil layer and shrub-grass layers, respectively, implying that soil is the main body of forest carbon storage. Young-aged forests accounted for a greater proportion of forests in the Province than forests in other age classes; and proper management of forests could increase the carbon sequestration in the forest ecosystems. The comparison with previous estimations of carbon storage for forest ecosystem implied that methods and data used for forest carbon storage estimation affected the results of estimates obviously.  相似文献   

2.
The effect of fire on soil organic matter--a review   总被引:22,自引:0,他引:22  
The extent of the soil organic carbon pool doubles that present in the atmosphere and is about two to three times greater than that accumulated in living organisms in all Earth's terrestrial ecosystems. In such a scenario, one of the several ecological and environmental impacts of fires is that biomass burning is a significant source of greenhouse gases responsible for global warming. Nevertheless, the oxidation of biomass is usually incomplete and a range of pyrolysis compounds and particulate organic matter (OM) in aerosols are produced simultaneously to the thermal modification of pre-existing C forms in soil. These changes lead to the evolution of the OM to "pyromorphic humus", composed by rearranged macromolecular substances of weak colloidal properties and an enhanced resistance against chemical and biological degradation. Hence the occurrence of fires in both undisturbed and agricultural ecosystems may produce long-lasting effects on soils' OM composition and dynamics. Due to the large extent of the C pool in soils, small deviations in the different C forms may also have a significant effect in the global C balance and consequently on climate change. This paper reviews the effect of forest fires on the quantity and quality of soils' OM. It is focused mainly on the most stable pool of soil C; i.e., that having a large residence time, composed of free lipids, colloidal fractions, including humic acids (HA) and fulvic acids (FA), and other resilient forms. The main transformations exerted by fire on soil humus include the accumulation of new particulate C forms highly resistant to oxidation and biological degradation including the so-called "black carbon" (BC). Controversial environmental implications of such processes, specifically in the stabilisation of C in soil and their bearing on the global C cycle are discussed.  相似文献   

3.
Carbon (C) sequestration in soils is gaining increasing acceptance as a means of reducing net carbon dioxide (CO2) emissions to the atmosphere. Numerous studies on the global carbon budget suggest that terrestrial ecosystems in the mid-latitudes of the Northern Hemisphere act as a large carbon sink of atmospheric CO2. However, most of the soils of North America, Australia, New Zealand, South Africa and Eastern Europe lost a great part of their organic carbon pool on conversion from natural to agricultural ecosystems during the explosion of pioneer agriculture, and in Western Europe the adoption of modern agriculture after the Second World War led to a drastic reduction in soil organic carbon content. The depletion of organic matter is often indicated as one of the main effects on soil, and the storage of organic carbon in the soil is a means of improve the quality of soils and mitigating the effects of greenhouse gas emission. The soil organic carbon in an area of Northern Italy over the last 70 years has been assessed In this study. The variation of top soil organic carbon (SOC) ranged from −60.3 to +6.7%; the average reduction of SOC, caused by agriculture intensification, was 39.3%. This process was not uniform, but related to trends in land use and agriculture change. For the area studied (1,394 km2) there was an estimated release of 5 Tg CO2-C to the atmosphere from the upper 30 cm of soil in the period 1935–1990.  相似文献   

4.
沿海滩涂垦殖对土壤氮总转化速率的影响分析   总被引:1,自引:0,他引:1  
滩涂湿地在吸收、转化和滞留氮、磷等营养元素方面具有重要功能。选取江苏东部沿海典型滩涂区,分别对垦殖时间为0、3、6、17、30、60 a的沿海滩涂进行采样,对相应的土壤氮总转化速率指标进行实验测定。结果表明,滩涂垦殖后,表征氮素活化过程的指标,如总矿化率、总硝化率、净矿化率和净硝化率等有所增加,而有利于氮固持的铵态氮同化率指标无显著变化,硝态氮同化率指标变慢;围垦期限超过30 a后,各氮总转化速率指标渐趋稳定。相关性分析表明,净矿化率、总矿化率、铵态氮同化率、净硝化率、总硝化率与围垦年限呈显著正相关(p<0.01),相关性系数分别为0.966、0.929、0.819、0.800、0.798;硝态氮同化率与围垦年限呈显著负相关(p<0.01),相关性系数为-0.685;除铵态氮外,全氮、硝态氮、pH值、有机碳均与各氮总转化速率指标呈显著相关关系(p<0.01)。滩涂垦殖后土壤理化性质指标的改变带来土壤氮总转化速率的变化,一定程度上破坏了土壤氮生态系统平衡。  相似文献   

5.
Global warming risks from emissions of green house gases (GHGs) by anthropogenic activities, and possible mitigation strategies of terrestrial carbon (C) sequestration have increased the need for the identification of ecosystems with high C sink capacity. Depleted soil organic C (SOC) pools of reclaimed mine soil (RMS) ecosystems can be restored through conversion to an appropriate land use and adoption of recommended management practices (RMPs). The objectives of this paper are to (1) synthesize available information on carbon dioxide (CO2) emissions from coal mining and combustion activities, (2) understand mechanisms of SOC sequestration and its protection, (3) identify factors affecting C sequestration potential in RMSs, (4) review available methods for the estimation of ecosystem C budget (ECB), and (5) identify knowledge gaps to enhance C sink capacity of RMS ecosystems and prioritize research issues. The drastic perturbations of soil by mining activities can accentuate CO2 emission through mineralization, erosion, leaching, changes in soil moisture and temperature regimes, and reduction in biomass returned to the soil. The reclamation of drastically disturbed soils leads to improvement in soil quality and development of soil pedogenic processes accruing the benefit of SOC sequestration and additional income from trading SOC credits. The SOC sequestration potential in RMS depends on amount of biomass production and return to soil, and mechanisms of C protection. The rate of SOC sequestration ranges from 0.1 to 3.1 Mg ha(-1) yr(-1) and 0.7 to 4 Mg ha(-1) yr(-1) in grass and forest RMS ecosystem, respectively. Proper land restoration alone could off-set 16 Tg CO2 in the U.S. annually. However, the factors affecting C sequestration and protection in RMS leading to increase in microbial activity, nutrient availability, soil aggregation, C build up, and soil profile development must be better understood in order to formulate guidelines for development of an holistic approach to sustainable management of these ecosystems. The ECBs of RMS ecosystems are not well understood. An ecosystem method of evaluating ECB of RMS ecosystems is proposed.  相似文献   

6.
在淡水湖泊生态系统中,水位高程的变化会对整个生态系统产生重要的影响。本研究以鄱阳湖最具代表性的碟形湖——蚌湖为实验地点,研究了水位高程对于湖泊湿地土壤微生物代谢功能的影响。在实验中沿水位高程及植被带演替布设6个样地,利用Biolog-Eco技术探究不同水位高程样地土壤微生物群落代谢功能的多样性及分布规律。结果表明:随着样地水位高程的降低,土壤含水量逐渐升高,地表植被的覆盖率逐渐减少,土壤有机养分出现先减小后增大的趋势;而土壤微生物对碳源代谢活性随着高程的降低依次减弱,且优先利用的碳源种类和碳源利用率也有显著不同。通过dbRDA排序分析表明:土壤微生物群落功能多样性沿高程呈现区域性分布特征,相邻的两样地土壤微生物碳源代谢功能更为相近。影响湿地土壤微生物碳源代谢功能的主要因子为土壤含水量、土壤有机质含量、pH、NH_4-N和地表植被类型。本研究结果可为合理管理和保护鄱阳湖湿地生态系统提供科学的指导。  相似文献   

7.
The biogeochemical cycle of organic carbon in Russian terrestrial ecosystems in 1990 is considered. Its components have been estimated as follows: net primary production, 4354 million metric tons of carbon (Mt C); annual amount of plant detritus, 3223 Mt C; heterotrophic soil respiration, 3214 Mt C; biomass utilization, 680 Mt C; damage to vegetation caused by fire and pests, 140 Mt C; and removal by surface and ground waters, 79 Mt C. Anthropogenically regulated fluxes of organic carbon (820 Mt C) are comparable to its amount involved in the natural cycle.  相似文献   

8.
The data presented were obtained at the first stage (1993–1999) of studies on evaluating the basic parameters of biological production in Russian terrestrial ecosystems in order to provide information for assessing and modeling the carbon budget of the entire terrestrial biota of the country. Stocks of phytomass (by fractions), coarse woody debris, and dead roots (underground necromass) were calculated by two independent methods, which yielded close results. The total amount of phytomass in Russian terrestrial ecosystems was estimated at 81800 Tg (=1012 g = million t) dry matter, or 39989 Tg carbon. Forest ecosystems comprise a greater part (82.1%) of live plant organic matter (here and below, comparisons are made with respect to the carbon content); natural grasslands and brushwoods account for 8.8%; the phytomass of wetlands (bogs and swamps), for 6.6%; and the phytomass of farmlands, for only 2.5%. Aboveground wood contains approximately two-thirds of the plant carbon (63.8%), and green parts contain 9.9%. For all classes of ecosystems, the proportion of underground phytomass averages 26.7% of the total amount, varying from 22.0% in forests to 57.1% in grasslands and brushwoods. The average phytomass density on lands covered with vegetation (1629.9 million hectares in Russia) is 5.02 kg/m2 dry matter, or 2.45 kg C/m2. The total amount of carbon in coarse woody debris is 4955 Tg C, and 9180 Tg C are in the underground necromass. In total, the vegetation of Russian terrestrial ecosystems (without litter) contains 54124 Tg carbon.  相似文献   

9.
With activities that alter the structure and function of the habitat, humans have a direct impact on ecosystems and ecosystem services, i.e., the conditions and processes that sustain human life. In this study, 35 townships in the Yanhe watershed in the Loess Plateau of China were selected. The net primary production (NPP), carbon sequestration and oxygen production (CSOP), water conservation, and soil conservation were the ecosystem services selected and valuated. Human activity was quantified by an integrated human activity index (HAI) based on population density, farmland ratio, and the influence of road networks and residential areas. The NPP, CSOP, and water conservation showed a conspicuous spatial pattern fanning outward from the southwest, while the soil conservation showed an obscure spatial pattern distinguished primarily by the peripheral area surrounding the urbanized areas. Total ecosystem services in the Yanhe watershed demonstrated a decreasing pattern from south to north, and the HAI was in proportion to administrative and economic development. Based on the selected ecosystem services and HAI, we mapped the townships of the Yanhe watershed by cluster analysis, and provided sustainable ecosystem management suggestions, tailored to the social-ecological map.  相似文献   

10.
农田固碳措施对温室气体减排影响的研究进展   总被引:2,自引:0,他引:2  
农田是CO2,CH4和N2O三种温室气体的重要排放源,在全球范围内农业生产活动贡献了约14%的人为温室气体排放量,以及58%的人为非CO2排放,不合理的农田管理措施强化了农田温室气体排放源特征,弱化了农田固碳作用。土壤碳库作为地球生态系统中最活跃的碳库之一,同时也是温室气体的重要源/汇。研究表明通过采取合理的农田管理措施,既可起到增加土壤碳库、减少温室气体排放的目的,又能提高土壤质量。农田土壤碳库除受温度、降水和植被类型的影响外,还在很大程度上受施肥量、肥料类型、秸秆还田量、耕作措施和灌溉等农田管理措施的影响。本文通过总结保护性耕作/免耕,秸秆还田,氮肥管理,水分管理,农学及土地利用变化等农田管理措施,探寻增强农田土壤固碳作用,减少农田温室气体排放的合理途径。农田碳库的稳定/增加,对于保证全球粮食安全与缓解气候变化趋势具有双重的积极意义。在我国许多有关土壤固碳与温室气体排放的研究尚不系统或仅限于短期研究,这也为正确评价各种固碳措施对温室气体排放的影响增加了不确定性。  相似文献   

11.
Knowledge about carbon and nitrogen in plants and soils and response to fence and graze in alpine ecosystems is still rudimentary because of extremely geographic situation. The purpose of this study was to compare the difference among carbon, nitrogen concentration, and content of unit area and dynamics of above- and below-ground biomass, soil organic carbon and total nitrogen between fencing and grazing alpine meadow. The results showed that total carbon and C: N radio in the aboveground tissue were significantly higher in fenced and ungrazing grassland (FU) than those in free grazing grassland (FG). In addition, the order of total carbon and nitrogen concentration of aboveground tissue of different function groups were not identical between them; The total carbon storage (TCS) per unit of aboveground tissue, roots and 0–30 cm soil layer increased after being fenced for 5 years from free grazing grassland (9255.17 g/m2) to fenced and ungrazing grassland (12637.10 g/m2) by 26.79%. The corresponding total nitrogen storage (TNS) increased by 751.42 g/m2. Furthermore over 95% TCS (TNS) come from 0–30 cm soil layer. However there were no significant differences between fenced and ungrazing grasslands of 10 years and 5 years. Therefore fenced to exclude grazing by Tibetan sheep and yaks was an alternative approach to sequester C to the soil in alpine meadow systems.  相似文献   

12.
The dynamics of carbon pools in the live phytomass, necromass, and soil reservoirs have been analyzed in fallow arable lands of Novgorod oblast. The results show that the amounts of above- and belowground necromass increase with the age of fallows, while the dynamics of live phytomass have no distinct trend. Comparisons with archival data show that the stocks of soil organic carbon in the studied ecosystems have decreased by 1.39 t C/ha since 1983, which is equivalent to an annual loss of 0.03 t C/ha. The main factors accounting for changes in the carbon stocks of fallow soils are the initial organic carbon contents in topsoil, the intensity of agromeliorative measures taken during the period of agricultural land use, and carbon contents in soils of meadow communities typical for a given region (zone).  相似文献   

13.
Distribution and abundance of macrozoobenthic species were investigated in open and shaded sites of tropical freshwater pond ecosystems in Kolkata. Water temperature of open sites was higher than the shaded sites but transparency value was lower at the lighted sites presumably related with the production of phytoplankton in the presence of sunlight. Diversity of species was recorded highest (26 species) along with total benthos density (5999 no/m2) at slightly illuminated open site. Mean biomass was also highest at the slightly illuminated open site. Total benthos density of macrozoobenthos was lower at the fully shaded and fully lighted sites. The greater occurrence and abundance of most macrozoobenthic species-including total benthos density and biomass at the slightly illuminated open site was probably associated with microhabitat suitability supported by moderate presence of macrophytes. Higher quality food (algae and algal detritus) and thermal suitability as well as phototactic attraction of motile epibenthic gastropods and other organisms contribute to the greater abundance and production of biomass at this site.  相似文献   

14.
扬子江城市群是江苏省城市化进程最快,土地利用变化最明显的区域。研究该地区地利用变化及其对陆地生态系统有机碳储量的影响,对江苏省低碳土地利用研究具有重要意义。该文利用五期30 m土地利用栅格数据、土壤样点数据、林地植被清查数据、农作物数据以及经验数据,分析了1995~2015年扬子江城市群土地利用时空变化、核算了其对有机碳储量的影响。主要结果如下:(1) 1995~2015年间,扬子江城市群约有15. 90%的土地发生了转移,其中,耕地作为主要的转出者,建设用地作为主要的转入者,耕地转移为建设用地的面积约为4 161. 78 km~2,占扬子江城市群耕地转出面积的85. 86%,是主要的土地转移类型;(2) 1995~2015年间,由于土地利用类型转移变化,扬子江城市群有机碳储量总量减少了472. 63×10~4t,其中土壤有机碳储量总量增加110. 28×10~4t,植被碳储量总量减少582. 91×10~4t;(3)建设用地占用耕地是区域有机碳储量减少的主要原因,导致有机碳储量减少406. 40×10~4t,占整个区域有机碳储量减少总量的85. 99%;(4)未来扬子江城市群可通过增加生态用地、控制建设用地、优化土地利用结构,提高区域碳储量,减少对陆地生态系统碳平衡的扰动。  相似文献   

15.
As part of a larger study to quantify and map ecosystem services in southeast Australia, we estimated carbon stored in biomass and soils and the net ecosystem carbon exchange between the land surface and the atmosphere in the Australian Capital Region (ACR). Our aim was to understand and quantify how different human-modified landscapes provide an essential ecosystem service: the exchange and storage of carbon in the landscape. Using a remote sensing based modelling methodology, we obtained values of Net Primary Productivity (NPP), total carbon in soil and biomass and carbon turnover from meteorological and terrain inputs and vegetation attributes. We obtained a set of maps of NPP, total carbon (C) storage and C-turnover for the ACR. We superimposed a land use/cover map to assign the uptake, storage and release of carbon to different land use/cover types. Our results support the hypothesis that human-intensive land uses significantly affect the ability of terrestrial ecosystems to provide an important ecosystem service in the form of carbon storage.  相似文献   

16.
The spatial pattern of soil redistribution rate was investigated using cesium-137 (137Cs) within a cultivated complex hillslope in western Iran. The relationship between soil redistribution rate and soil organic carbon and total nitrogen pattern were studied using co-regionalization analysis. Ninety-one soil cores were sampled for 137Cs, total nitrogen, and soil organic carbon measurements. The simplified mass balance model estimated a gross erosion rate of 29.8 t ha−1 yr−1 and a net soil deposition rate of 21.8 t ha−1 yr−1; hence, a net soil loss rate of 8 t ha−1 yr−1. This magnitude of soil erosion rate is higher than the acceptable rate in semiarid regions. Co-regionalization analysis and co-dispersive coefficients among the selected variables showed that only a small fraction of the variability in total nitrogen and soil organic carbon could be explained by soil redistribution and that the remaining might be the result of different management practices by local farmers.  相似文献   

17.
Soil management practices for sustainable agro-ecosystems   总被引:1,自引:0,他引:1  
A doubling of the global food demand projected for the next 50 years poses a huge challenge for the sustainability of both food production and global and local environments. Today’s agricultural technologies may be increasing productivity to meet world food demand, but they may also be threatening agricultural ecosystems. For the global environment, agricultural systems provide both sources and sinks of greenhouse gases (GHGs), which include carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). This paper addresses the importance of soil organic carbon (SOC) for agro-ecosystems and GHG uptake and emission in agriculture, especially SOC changes associated with soil management. Soil management strategies have great potential to contribute to carbon sequestration, since the carbon sink capacity of the world’s agricultural and degraded soil is 50–66% of the historic carbon loss of 42–72 Pg (1 Pg=1015 g), although the actual carbon storage in cultivated soil may be smaller if climate changes lead to increasing mineralization. The importance of SOC in agricultural soil is, however, not controversial, as SOC helps to sustain soil fertility and conserve soil and water quality, and organic carbon compounds play a variety of roles in the nutrient, water, and biological cycles. No-tillage practices, cover crop management, and manure application are recommended to enhance SOC storage and to contribute to sustainable food production, which also improves soil quality. SOC sequestration could be increased at the expense of increasing the amount of non-CO2 GHG emissions; however, soil testing, synchronized fertilization techniques, and optimum water control for flooding paddy fields, among other things, can reduce these emissions. Since increasing SOC may also be able to mitigate some local environmental problems, it will be necessary to have integrated soil management practices that are compatible with increasing SOM management and controlling soil residual nutrients. Cover crops would be a critical tool for sustainable soil management because they can scavenge soil residual nitrogen and their ecological functions can be utilized to establish an optimal nitrogen cycle. In addition to developing soil management strategies for sustainable agro-ecosystems, some political and social approaches will be needed, based on a common understanding that soil and agro-ecosystems are essential for a sustainable society.  相似文献   

18.
Isotopic analysis has become an important tool in the study of lateral links between ecosystems. The isotopic composition of carbon in terrestrial and aquatic primary producers can differ significantly, which provides an opportunity to identify the “marine” or “freshwater” carbon in the tissues of terrestrial animals. We measured the isotopic composition of C and N in tissues of soil invertebrates and estimated the proportion of “aquatic” carbon in the energy budget of terrestrial food webs at different distances from the Black Sea and a freshwater lake. Terrestrial predators are actively subsidized with carbon from the Black Sea to distance of up to about 50 m. The carbon subsidy from the freshwater lake is significant in the zone extending no farther than the forest border (ca. 15 m). Thus, the effect of allochthonous organic matter on terrestrial communities in both cases manifests itself only in a relatively narrow coastal strip.  相似文献   

19.
Soil-fungus transfer coefficients are usually defined as the ratio between the content of the fruiting bodies and that of the soil. Since, however, the methodology of how to determine the soil content is not firmly established, there exist a variety of definitions in the literature. We analyzed the 137Cs, 90Sr, 40K, and 226Ra content of mushroom and soil samples from two pine-wood ecosystems in Spain. The location of the mycelium in the soil profiles of these ecosystems was determined by means of the ergosterol concentration. The results showed the mycelium to generally be localized in the surface layer of soil (0-5 cm). We also carried out a speciation procedure for this layer of soil to determine the different degrees of association of the radionuclides in the soil. The results led us to propose some variations to the traditional definition used in quantifying radionuclide transfer. With these modifications, we were able to analyze Cs-K competition in several species of mycorrhizal and saprophytic fungi.  相似文献   

20.
Quantitative characteristics of organic carbon stock and distribution in the main ecosystem blocks and production-destruction processes in the soil-phytocenosis system have been evaluated in wet oldgrowth bilberry-sphagnum forest. It has been shown that equivalent amounts of carbon are accumulated in the soil and plant reservoirs of the ecosystem and that atmospheric carbon fixation for phytomass production prevails over carbon release in the course of necromass decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号