首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
何娜  李培军  任婉侠  范淑秀 《环境科学》2008,29(7):1924-1929
采用Fe0还原、钯催化法对土壤中2,2′,3,4,4′,5,5′-七氯联苯的的还原特性进行了实验研究.结果表明,Pd/Fe双金属能有效地进行2,2′,3,4,4′,5,5′-七氯联苯的催化脱氯.在钯化率为0.05%、钯/铁加入量1g、初始pH为5.6、反应时间5 d的条件下,钯/铁双金属对土壤中2,2′,3,4,4′,5,5′-七氯联苯去除率达54%.实验还考察了钯化率、初始pH、反应时间、钯/铁投加量、2,2′,3,4,4′,5,5′-七氯联苯初始浓度等参数对2,2′,3,4,4′,5,5′-七氯联苯脱氯效果的影响.研究表明,较高的钯化率、钯/铁加入量,较低的2,2′,3,4,4′,5,5′-七氯联苯初始浓度及弱酸性等条件更有利于Pd/Fe对2,2′,3,4,4′,5,5′-七氯联苯的还原脱氯.在Pd/Fe双金属表面,2,2′,3,4,4′,5,5′-七氯联苯的脱氯符合一级动力学反应,反应速率常数为0.014 2/h,其半衰期为49h.利用实验数据,对钯/铁双金属作用下的2,2′,3,4,4′,5,5′-七氯联苯还原脱氯的反应机制也进行了分析.  相似文献   

2.
金属催化还原技术对p-二氯苯的脱氯   总被引:9,自引:0,他引:9  
研究了Pd/Fe双金属体系对p-二氯苯(p-DCB)的快速催化还原脱氯处理. 结果表明, 在Pd的催化作用下,零价Fe对p-DCB具有较好的还原脱氯效率. 当Pd/Fe双金属的钯化率为0.02%,催化还原剂的用量为4g/75mL,反应90min p-DCB脱氯率达到90%以上;p-DCB的脱氯效率与溶液初始pH值、反应温度、钯化率、Pd/Fe投加量等因素有关;p-DCB在催化还原脱氯过程中先生成氯苯,而后继续脱氯生成苯.  相似文献   

3.
纳米Pd/Fe双金属对2,4-二氯酚的脱氯机理及动力学   总被引:16,自引:1,他引:15  
采用纳米Pd Fe双金属对2,4 二氯酚(2,4 DCP)进行了催化还原脱氯处理.结果表明,纳米Pd Fe双金属具有较高的比表面积和反应活性,对2,4 DCP具有较好的脱氯效率.当纳米Pd Fe用量在6g·L-1时,2,4 DCP脱氯率达到90%以上;脱氯效率与pH值、温度、钯化率、Pd Fe投加量等因素有关.2,4 DCP在脱氯过程中先生成邻氯酚和对氯酚,而后继续脱氯生成苯酚,或由2,4 DCP直接降解成苯酚.2,4 DCP降解符合拟一级反应动力学.2,4 DCP催化还原脱氯反应的活化能为139 7kJ·mol-1.  相似文献   

4.
采用EDTA优化纳米Pd/Fe催化脱氯水中2,4-二氯苯氧乙酸(2,4-D),并考察了EDTA投加浓度、pH、钯化率、温度等因素对2,4-D还原的影响.结果表明,EDTA的加入络合了纳米Pd/Fe在催化脱氯过程中生成的铁离子,抑制纳米Pd/Fe颗粒表面钝化层的形成,提高了体系的反应活性.适宜的EDTA浓度、低pH、高钯化率、低温等有利于2,4-D的还原脱氯.当EDTA浓度为25.0 mmol·L-1,纳米铁含量为1.0 g·L-1,初始pH=4.3、钯化率为0.5%,温度为25.0℃,搅拌速率为200 r·min~(-1)时,反应50 min,10.0 mg·L-1的2,4-D去除率及苯氧乙酸(PA)生成率均达到100%.  相似文献   

5.
Pd/Fe及纳米Pd/Fe对氯酚的脱氯研究   总被引:30,自引:4,他引:26       下载免费PDF全文
采用化学沉淀法制备得到了纳米Fe和纳米Pd/Fe(20~100nm),利用制备的纳米催化剂对氯酚进行了催化脱氯研究,并与常规的零价铁和Pd/Fe进行了对比分析.结果表明,纳米颗粒具有较高的比表面积和表面反应活性,所制备的纳米Pd/Fe双金属BET比表面积达到12.4m2/g,而商用铁颗粒(<10m)的比表面积只有0.49m2/g;当钯化率为0.0666%,纳米Pd/Fe用量在6g/L时,氯酚脱氯率达到90%以上,在相同的处理效果下,常规Pd/Fe的使用量为纳米Pd/Fe的20倍左右,纳米Pd/Fe催化氯酚的脱氯降解遵循一级反应动力学.  相似文献   

6.
实验采用共沉淀法制得CeO_2负载型双金属Pd/Fe催化剂,并对催化剂的结构特征进行了X射线衍射(XRD)和扫描电子显微镜(SEM)分析.使用负载型双金属催化剂对四氯化碳进行还原脱氯研究,探究了温度、溶液初始pH值、催化剂投加量及不同钯载率对四氯化碳脱氯的影响;对比了不同催化剂包括纳米零价铁、纳米钯铁双金属和CeO_2负载型双金属Pd/Fe对四氯化碳的脱氯效果.实验结果表明负载型双金属催化剂在温度为40℃,溶液初始pH为6.5,催化剂投加量为0.4 g·L-1,钯载率为0.5%的条件下,对初始浓度为5 mg·L-1的四氯化碳的去除率高达99.88%.在相同的反应条件下,纳米零价铁和纳米钯铁双金属对四氯化碳的脱氯率分别为58.25%、87.94%.此外,对四氯化碳的脱氯机制进行了探讨.  相似文献   

7.
构建了纳米Pd/Fe催化还原甲醇/水中2,2’,4,4’-四溴联苯醚(BDE-47)反应体系,常压下采用单因素实验系统考察了纳米Pd/Fe催化还原甲醇/水中2,2’,4,4’-四溴联苯醚(BDE-47)的主要影响因素,并分析了BDE-47还原反应的中间产物及终产物.结果表明,纳米Pd/Fe的反应活性随Pd负载率的提高而先升后降;甲醇-水体积比高于50∶50后,BDE-47去除率随甲醇-水体积比升高而降低;在25~40℃内,BDE-47去除率随反应温度的升高而升高,随BDE-47初始浓度的增加而降低,增加纳米Pd/Fe量可提高反应速率;酸性及弱碱性条件有利于BDE-47还原.BDE-47还原主要为脱溴反应,是一个从n溴到(n-1)溴联苯醚的逐步脱溴过程,反应进行90min后,BDE-47分子中溴原子完全被脱除,反应终产物为二苯醚.  相似文献   

8.
周红艺  曾思思  梁思  韩鉴 《环境科学》2014,35(9):3430-3435
采用Pd/Fe双金属对2,4-二氯苯氧乙酸(2,4-D)进行催化还原脱氯,以活性污泥对2,4-D脱氯产物进行生物氧化,考察初始pH、活性污泥量、污染物初始浓度、温度等因素对生物氧化的影响情况.通过PCR-变性梯度凝胶电泳分析污泥体系菌群变化情况,高效液相色谱测定来推测目标污染物的降解过程.结果表明:1 Pd/Fe双金属可有效还原2,4-D,其主要先还原为2-氯苯氧乙酸(2-CPA),最终顺序脱氯为苯氧乙酸(PA).2 2,4-D具有较大生物毒性,其脱氯产物毒性下降,更易被生物降解.3 pH=7、污泥量50 mL/200 mL、适量的初始PA浓度(14.6 mg·L-1)和30℃均有利于PA的去除.在该条件下反应96 h,PA去除率可达84.3%.  相似文献   

9.
Fe~0催化还原转化水中CCl_4的实验研究   总被引:2,自引:0,他引:2  
通过在Fe0表面化学沉积Cu、Ag、Pd、Ni构建了Cu/Fe、Ag/Fe、Pd,Fe、Ni/Fe多种双金属催化还原体系.通过序批实验研究了水体中毒性污染物CCl在Fe0以及上述双金属催化Fe0体系中的还原脱氯.结果表明,CCl4在上述5种Fe0还原体系中都能发生快速还原脱氯反应,Cu、Ag、Pd等催化剂的加入能明显提高反应速率.还原脱氯反应服从准一级反应动力学方程,CCl4水溶液在Fe0、Cu/Fe、Ag/Fe、Pd/Fe、Ni/Fe 5种还原体系中的反应速率常数分别为0.039 3、0.092 5、0.158、0.049 6和0.053 3 min-1.使用GC/MS分析了CCl4在各种还原体系中的还原脱氯产物,探讨了水体中CCl4还原脱氯降解的反应途径和可能中间产物.CCL4在不同反应体系中不但反应速率不同而且降解产物也不相同,在Cu/Fe、Ag/Fe体系产物以三氯甲烷、二氯甲烷为主,而在Pd/Fe体系主要为甲烷.逐步氢解是CCl4在Fe0还原体系中发生还原脱氯反应的最主要途径.  相似文献   

10.
EDTA对Pd/Fe体系还原脱氯2,4-D的影响   总被引:1,自引:1,他引:0  
针对Pd/Fe体系对含氯有机物催化还原脱氯过程中,零价铁易腐蚀并在颗粒表面形成钝化层,阻碍目标污染物的进一步脱氯去除,本研究利用乙二胺四乙酸(EDTA)与Fe2+和Fe3+的络合作用,消除Pd/Fe颗粒表面的钝化层,使还原脱氯过程得到持续进行.实验考察了EDTA的投加方式和投加量、p H、钯负载率、温度等因素对2,4-二氯苯氧乙酸(2,4-D)还原脱氯的影响.结果表明:1EDTA浓度为25.0 mmol·L-1、投加速率为20 m L·h-1时,苯氧乙酸(PA)生成率在20 min达到了90.7%.而未加EDTA的反应体系,反应210 min后,PA的生成率仅为74.5%;2EDTA可以络合Pd/Fe体系在催化脱氯过程中生成的Fe2+和Fe3+,防止或减缓了Pd/Fe颗粒表面钝化层的形成,提高了反应活性;3适宜的2,4-D催化脱氯条件为:浓度25.0mmol·L-1的EDTA溶液,投加速率20 m L·h-1、初始p H为4.2、钯负载率0.050%、温度30.0℃、搅拌速率200 r·min-1,反应210 min,20.0 mg·L-1的2,4-D几乎可完全转化为PA;42,4-D催化脱氯的中间产物主要是2-氯苯氧乙酸及微量的4-氯苯氧乙酸,最终产物为苯氧乙酸.  相似文献   

11.
有机阴离子可以和长碳链的季胺盐阳离子结合生成可溶于高介电常数有机溶剂的离子对.在此溶剂中,它可以和某些卤代烃发生复分解反应,生成季铵盐阳离子的卤化物及有机阴离子的相应烷基化物,故称离子对烷基化反应.此反应条件温和,转化率高,被广泛地应用于酸性及其它含活泼氢的有机化合物的烷基衍生物合成中.在这类有机物的分析中也得到应用.但尚未见应用于农药及其降解物残留分析中的报道. 2,4-D,2,4,5-T是典型的酸性有机农药,广泛用作农田除草剂.在二者的残留分析中,通常用CH_2N_2、BF_3CH_3OH、(CH_3)_2SO_4将它们烷基化,然后用气相色谱加以分析.近几年也有人用多卤素取代醇的BCl_3络合物或五氟苄基溴化物同Na_2CO_3作为  相似文献   

12.
葛蔚  柴超  董超 《中国环境科学》2012,32(10):1882-1887
以牟氏角毛藻为研究对象,采用半连续培养法,研究了不同氮浓度条件下牟氏角毛藻对2,2',4,4',5-五溴联苯醚富集.结果表明,牟氏角毛藻对多溴联苯醚的富集与氮营养条件有关,随着氮浓度的增加,富集量和富集因子均呈降低趋势.氮浓度为0,128,512μmol/L条件下,单位藻细胞的富集量分别为2.84,2.38,1.91ng/106 cells,单位体积藻液富集量分别为0.19,0.16,0.12ng/mL.富集因子的变化趋势相似,氮为0μmol/L时单位总脂富集因子(BCFlipid)为238.19×104 (ng/g)/(ng/mL),随着氮浓度的升高,BCFlipid明显降低.相关性分析表明,单位体积藻液富集量、单位藻细胞富集量和BCFlipid等均与氮浓度呈现显著的负相关关系(r>-0.8, P0.8, P<0.05).  相似文献   

13.
本文结合光谱法、动力学模拟(MD)和分子对接等手段,多角度地研究了2,2′,4,4′,5-五溴二苯醚(BDE-99)与人血清白蛋白(HSA)在pH=7.4模拟生理环境下的相互作用机制.首先采用MD从理论上模拟BDE-99与HSA相互作用的构象变化情况;然后利用同步荧光和三维荧光光谱法从实验角度进行验证,所得结果表明,BDE-99使HSA的疏水性增强从而导致其构象发生变化.同时,荧光光谱和紫外光谱得出BDE-99对HSA的猝灭机制属于静态猝灭和非辐射能量转移.另外,分子对接结果显示,BDE-99通过静电引力和疏水作用力结合在HSA的位点I处,这与竞争实验和热力学参数的分析结果是一致的.实验数据与模拟计算结果的相互印证,为进一步探究BDE-99和HSA的相互作用机制提供了重要的信息和参考依据.  相似文献   

14.
15.
16.
17.
18.
2018年11月23日-12月4日,京津冀及周边地区"2+26"城市出现了一次长时间、大范围、高强度的复合型大气重污染过程,为揭示区域性重污染过程中多因素的综合作用,利用气象资料、空气质量监测等多源数据以及区域污染特征雷达图,对京津冀及周边地区"2+26"城市此次重污染特征和成因进行分析.结果表明:根据PM2.5/PM10[ρ(PM2.5)/ρ(PM10),下同]可将此次重污染过程划分为4个阶段.第一阶段(2018年11月23-26日)PM2.5/PM10在0.5~1.0内波动,"2+26"城市大气扩散条件转差,一次污染物局地积累及SO2、NOx、NH3等气态污染物在高湿条件下二次转化是污染形成并发展的主要原因;第二阶段(11月27日)PM2.5/PM10突降至0.2左右,"2+26"城市北部受形成于蒙古国的沙尘影响,短时ρ(PM10)快速升高(峰值为818 μg/m3),中南部受形成于内蒙古自治区阿拉善盟的沙尘及上风向PM2.5污染的传输影响,ρ(PM2.5)和ρ(PM10)均较高,维持日均重度污染水平(参照GB 3095-2012《环境空气质量标准》和HJ 633-2012《环境空气质量指数(AQI)技术规定(试行)》);第三阶段(11月28日-12月2日)PM2.5/PM10由0.3逐渐升至0.8,在静稳、高湿的不利气象条件下,一次污染物积累并二次转化,第二阶段残留沙尘中的矿物质对硫酸盐起到催化作用,导致ρ(PM2.5)快速上升,"2+26"城市大部分达日均重度及以上污染;第四阶段(12月3-4日)与第二阶段类似,PM2.5/PM10突降至0.2,"2+26"城市再次受到沙尘天气和区域传输的共同影响,因冷空气持续时间较长,污染被有效清除.研究显示,此次污染过程是气象条件、污染物一次排放和二次转化、区域传输、沙尘天气等多因素综合作用的结果.当静稳、高湿等不利气象条件或沙尘天气出现时,区域应加强对各类污染物排放的管控力度,以降低污染物的一次排放、二次转化以及沙尘和区域传输的共同影响,进而削弱污染严重程度.   相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号