首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study characterizes layer- and local-scale heterogeneities in hydraulic parameters (i.e., matrix permeability and porosity) and investigates the relative effect of layer- and local-scale heterogeneities on the uncertainty assessment of unsaturated flow and tracer transport in the unsaturated zone of Yucca Mountain, USA. The layer-scale heterogeneity is specific to hydrogeologic layers with layerwise properties, while the local-scale heterogeneity refers to the spatial variation of hydraulic properties within a layer. A Monte Carlo method is used to estimate mean, variance, and 5th, and 95th percentiles for the quantities of interest (e.g., matrix saturation and normalized cumulative mass arrival). Model simulations of unsaturated flow are evaluated by comparing the simulated and observed matrix saturations. Local-scale heterogeneity is examined by comparing the results of this study with those of the previous study that only considers layer-scale heterogeneity. We find that local-scale heterogeneity significantly increases predictive uncertainty in the percolation fluxes and tracer plumes, whereas the mean predictions are only slightly affected by the local-scale heterogeneity. The mean travel time of the conservative and reactive tracers to the water table in the early stage increases significantly due to the local-scale heterogeneity, while the influence of local-scale heterogeneity on travel time gradually decreases over time. Layer-scale heterogeneity is more important than local-scale heterogeneity for simulating overall tracer travel time, suggesting that it would be more cost-effective to reduce the layer-scale parameter uncertainty in order to reduce predictive uncertainty in tracer transport.  相似文献   

2.
Fracturing, either pneumatic or hydraulic, is a method to improve the performance of soil vapor extraction (SVE) in relatively low permeability soils (< 10(-5) cm/s). A two-dimensional model is presented to simulate trichloroethylene (TCE) soil vapor extraction modified by fracturing. Flow and transport is modeled using mobile macropore and micropore networks, which also have been identified in the literature as dual porosity, dual permeability, or heterogeneous flow models. In this model, fluids can flow in both the macropore and micropore networks. This represents a more general model compared to immobile micropore, mobile macropore models presented thus far in the literature for vapor flow and transport in two dimensions. The model considers pressure- and concentration-driven exchange between the macropore and micropore networks, concentration-driven exchange between the gas and sorbed phases within each network, and equilibrium exchange between the gas and water and a sorbed phase within each network. The parameters employed in an example simulation are based on field measurements made at a fractured site. Considered in the simulations were the influence of the volume percentage of fractures, the length of fractures, the relative location of the water table, and the influence of pulsed pumping. For these simulations, internetwork concentration-driven exchange most significantly affected mass removal. The volume percentage of fractures more significantly influence flow and mass removal than the length of fractures. The depth of the water table below the contamination plume only significantly influenced flow and mass removal when the water table was within 60 cm of the bottom of the contaminated soil in the vadose zone for the parameters considered in this study. Pulsed pumping was not found to increase the amount of mass removed in this study.  相似文献   

3.
Soil macropore networks establish a dual-domain transport scenario in which water and solutes are preferentially channeled through soil macropores while slowly diffusing into and out of the bulk soil matrix. The influence of macropore networks on intra-ped solute diffusion and preferential transport in a soil typical of subsurface-drained croplands in the Midwestern United States was studied in batch- and column-scale experiments. In the batch diffusion studies with soil aggregates, the estimated diffusion radius (length) of the soil aggregates corresponded to the half-spacing of the aggregate fissures, suggesting that the intra-ped fissures reduced the diffusion impedance and preferentially allowed solutes to diffuse into the soil matrix. In the column-scale solute transport experiments, the average diffusion radius (estimated from HYDRUS-2D simulations and a first-order diffusive transfer term) was nearly double that of the batch-scale study. This increase may be attributed to a loss of pore continuity and a compounding of the small diffusion impedance through macropores at the larger scale. The column-scale solute transport experiments also suggest that two preferential networks exist in the soil. At and near soil saturation, a primary network of large macropores (possibly root channels and earthworm burrows) dominate advective transport, causing a high degree of physical and sorption nonequilibrium and simultaneous breakthrough of a nonreactive (bromide) and a reactive (alachlor) solute. As the saturation level decreases, the primary network drains, while transport through smaller macropores (possibly intra-ped features) continues, resulting in a reduced degree of nonequilibrium and separation in the breakthrough curves of bromide and alachlor.  相似文献   

4.
Model predictions of pesticide transport in structured soils are complicated by multiple processes acting concurrently. In this study, the hydraulic, physical, and chemical nonequilibrium (HNE, PNE, and CNE, respectively) processes governing herbicide transport under variably saturated flow conditions were studied. Bromide (Br-), isoproturon (IPU, 3-(4-isoprpylphenyl)-1,1-dimethylurea) and terbuthylazine (TER, N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine) were applied to two soil columns. An aggregated Ap soil column and a macroporous, aggregated Ah soil column were irrigated at a rate of 1 cm h(-1) for 3 h. Two more irrigations at the same rate and duration followed in weekly intervals. Nonlinear (Freundlich) equilibrium and two-site kinetic sorption parameters were determined for IPU and TER using batch experiments. The observed water flow and Br- transport were inversely simulated using mobile-immobile (MIM), dual-permeability (DPM), and combined triple-porosity (DP-MIM) numerical models implemented in HYDRUS-1D, with improving correspondence between empirical data and model results. Using the estimated HNE and PNE parameters together with batch-test derived equilibrium sorption parameters, the preferential breakthrough of the weakly adsorbed IPU in the Ah soil could be reasonably well predicted with the DPM approach, whereas leaching of the strongly adsorbed TER was predicted less well. The transport of IPU and TER through the aggregated Ap soil could be described consistently only when HNE, PNE, and CNE were simultaneously accounted for using the DPM. Inverse parameter estimation suggested that two-site kinetic sorption in inter-aggregate flow paths was reduced as compared to within aggregates, and that large values for the first-order degradation rate were an artifact caused by irreversible sorption. Overall, our results should be helpful to enhance the understanding and modeling of multi-process pesticide transport through structured soils during variably saturated water flow.  相似文献   

5.
A two-dimensional flow and transport model was developed for simulating transient water flow and nonreactive solute transport in heterogeneous, unsaturated porous media containing air and water. The model is composed of a unique combination of robust and accurate numerical algorithms for solving the Richards', Darcy flux, and advection-dispersion equations. The mixed form of Richards' equation is solved using a finite-element formulation and a modified Picard iteration scheme. Mass lumping is employed to improve solution convergence and stability behavior. The flow algorithm accounts for hysteresis in the pressure head-water content relationship. Darcy fluxes are approximated with a Galerkin and Petrov-Galerkin finite-element method developed for random heterogeneous porous media. The transport equation is solved using an Eulerian-Lagrangian method. A multi-step, fourth-order Runge-Kutta, reverse particle tracking technique and a quadratic-linear interpolation scheme are shown to be superior for determining the advective concentration. A Galerkin finite-element method is used for approximating the dispersive flux. The unsaturated flow and transport model was applied to a variety of rigorous problems and was found to produce accurate, mass-conserving solutions when compared to analytical solutions and published numerical results.  相似文献   

6.
A column containing four concentric layers of progressively finer-grained glass beads (graded column) was used to study the transport of the bacteriophage T7 in water flowing parallel to layering through a fining-upwards (FU) sedimentary structure. By passing a pulse of T7, and a conservative solute tracer upwards through a column packed with a single bead size (uniform column), the capacity of each bead type to attenuate the bacteriophage was determined. Solute and bacteriophage responses were modelled using an analytical solution to the advection-dispersion equation, with first-order kinetic deposition simulating bacteriophage attenuation. Resulting deposition constants for different flow velocities indicated that filtration theory-determined values differed from experimentally determined values by less than 10%. In contrast, the responses of solute and bacteriophage tracers passing upwards through graded columns could not be reproduced with a single analytical solution. However, a flux-weighted summation of four one-dimensional advective-dispersive analytical terms approximated solute breakthrough curves. The prolonged tailing observed in the resulting curve resembled that typically generated from field-based tracer test data, reflecting the potential importance of textural heterogeneity in the transport of dissolved substances in groundwater. Moreover, bacteriophage deposition terms, determined from filtration theory, reproduced the T7 breakthrough curve once desorption and inactivation on grain surfaces were incorporated. To evaluate the effect of FU sequences on mass transport processes in more detail, bacteriophage passage through sequences resembling those sampled from a FU bed in a fluvioglacial gravel pit were carried out using an analogous approach to that employed in the laboratory. Both solute and bacteriophage breakthrough responses resembled those generated from field-based test data and in the graded column experiments. Comparisons with the results of simulations using averaged hydraulic conductivities show that simulations employing averaged parameters overestimate bacteriophage travel times and underestimate masses recovered and peak concentrations.  相似文献   

7.
土壤环境下污染物运移问题的数值模拟研究   总被引:2,自引:0,他引:2  
胡舸  彭帅  张胜涛 《环境工程学报》2010,4(7):1659-1663
在土壤环境中,物质传输机制显著影响着污染物的运移,分析污染物运移问题的数值解,可以掌握污染物在土壤中传输的时空规律,具有重要的理论意义和实际意义。以对流扩散传输理论为依据,建立了土壤环境下污染物运移的数学模型,然后基于COMSOL对几种特定初始及边界条件下的对流扩散问题进行数值模拟,计算了稳定连续、指数变化和瞬时释放3种典型污染源排放模型,并对比了模型中的扩散、对流、吸附降解等参数对计算结果的影响,最后对污染物浓度分布的计算结果进行了相关分析和讨论。  相似文献   

8.
合理分析车载加油油气回收系统(ORVR)内气液两相的流动特性对油气排放控制技术的实施具有重要意义。以ORVR加油系统为对象,采用高速摄像、粒子动态分析仪(PDA)实验测量和CFD数值模拟相结合的方法,对ORVR车辆加油过程中的气液两相流动特性进行了系统研究,讨论了加油量对加油管内流场和压力场的影响。结果表明,随着加油速度的增大,加油管口的射流卷吸增强,气液两相流动过程中的湍流程度加剧,液流冲击与破碎严重,涡旋现象明显;随着加油速度的增大,气液掺混严重,液体自由表面边界逐渐模糊;加油过程中加油管和燃油箱内气相压力的变化分为2个阶段:开始加油时气相压力迅速增大,在5~8 s内达到峰值;然后气相压力逐渐减小,最终趋于稳定。  相似文献   

9.
Recent discovery of bomb-related 36Cl at depth in fractured tuff in the unsaturated zone at the Yucca Mountain candidate high-level waste (HLW) repository site has called into question the usual modeling assumptions based on the equivalent continuum model (ECM). A dual continuum model (DCM) for simulating transient flow and transport at Yucca Mountain is developed. In order to ensure properly converged flow solutions, which are used in the transport simulation, a new flow solution convergence criteria is derived. An extensive series of simulation studies is presented which indicates that rapid movement of solute through the fractures will not occur unless there are intense episodic infiltration events. Movement of solute in the environs of the repository is enhanced if the properties of the tuff layer at the repository horizon are modified from current best-estimate values. Due to a large advective–dispersive coupling between the matrix and fractures, the matrix acts as a major buffer which inhibits rapid transport along the fractures. Consequently, fast movement of solutes through the fractures to the repository depth can only be explained if the matrix–fracture coupling term is significantly reduced from a value that would be calculated on the basis of data currently available.  相似文献   

10.
An electromigration transport model for non-reactive ion transport in unsaturated soil was developed and tested against laboratory experiments. This model assumed the electric potential field was constant with respect to time, an assumption valid for highly buffered soil, or when the electrode electrolysis reactions are neutralized. The model also assumed constant moisture contents and temperature with respect to time, and that electroosmotic and hydraulic transport of water through the soil was negligible. A functional relationship between ionic mobility and the electrolyte concentration was estimated using the chemical activity coefficient. Tortuosity was calculated from a mathematical relationship fitted to the electrical conductivity of the bulk pore water and soil moisture data. The functional relationship between ionic mobility, pore-water concentration, and tortuosity as a function of moisture content allowed the model to predict ion transport in heterogeneous unsaturated soils. The model was tested against laboratory measurements assessing anionic electromigration as a function of moisture content. In the test cell, a strip of soil was spiked with red dye No 40 and monitored for a 24-h period while a 10-mA current was maintained between the electrodes. Electromigration velocities predicted by the electromigration transport model were in agreement with laboratory experimental results. Both laboratory-measured and model-predicted dye migration results indicated a maximum transport velocity at moisture contents less than saturation due to competing effects between current density and tortuosity as moisture content decreases.  相似文献   

11.
垃圾填埋场渗滤液运移规律分析与模拟   总被引:4,自引:0,他引:4  
基于多孔介质流体力学、多相流以及土壤水动力学理论,利用理论分析和数值模拟相结合的方法,研究了垃圾填埋场中渗滤液运移过程的基本规律,并对填埋场底部可渗和不可渗2种情况下渗滤液的运移规律进行了模拟比对,研究成果可为填埋场渗滤液控制系统的设计和管理提供科学的理论依据和技术支持。  相似文献   

12.
Results of a field demonstration of electrokinetic transport of acetate through an unsaturated heterogeneous soil are compared to numerical modeling predictions. The numerical model was based on the groundwater flow and transport codes MODFLOW and MT3D modified to account for electrically induced ion transport. The 6-month field demonstration was conducted in an unsaturated layered soil profile where the soil moisture content ranged from 4% to 28% (m3 m(-3)). Specially designed ceramic-cased electrodes maintained a steady-state moisture content and electric potential field between the electrodes during the field demonstration. Acetate, a byproduct of acetic acid neutralization of the cathode electrolysis reaction, was transported from the cathode to the anode by electromigration. Field demonstration results indicated preferential transport of acetate through soil layers exhibiting higher moisture content/electrical conductivity. These field transport results agree with theoretical predictions that electromigration velocity is proportional to a power function of the effective moisture content. A numerical model using a homogeneous moisture content/electrical conductivity domain did not adequately predict the acetate field results. Numerical model predictions using a three-layer electrical conductivity/moisture content profile agreed qualitatively with the observed acetate distribution. These results suggest that field heterogeneities must be incorporated into electrokinetic models to predict ion transport at the field-scale.  相似文献   

13.
14.
A contaminant transport model was developed to simulate the fate and transport of organic compounds such as TNT (2,4,6-trinitrotoluene), using the single-root system. Onions were planted for this system with 50-ml plastic tubes. Mass in the soil, soil solution, root and leaf was monitored using 14C-TNT. Model parameters were acquired from the experiments in the single-root system and were used to simulate total TNT concentration in soil, providing the average concentrations in the rhizosphere and bulk soil as well as root and leaf compartments. Because the existing RCF (root concentration factor) and TSCF (transpiration stream concentration factor) equations based on logKow (octanol-water partition coefficient) were not correlated to TNT uptake, a new term, root uptake rate (Rur), and a new Tscf equation, based on the experimental data, were introduced in the proposed model. The results from both modeling and experimental studies showed higher concentrations of TNT in the rhizosphere than in the bulk soil, because mass transported from the surrounding soil into the rhizosphere was higher than that by root uptake.  相似文献   

15.
Penetration of reactive solute into a soil during a cycle of water infiltration and redistribution is investigated by deriving analytical closed form solutions for fluid flux, moisture content and contaminant concentration. The solution is developed for gravitational flow and advective transport and is applied to two scenarios of solute applications encountered in the applications: a finite pulse of solute dissolved in irrigation water and an instantaneous pulse broadcasted onto the soil surface. Through comparison to simulations of Richards' flow, capillary suction is shown to have contrasting effects on the upper and lower boundaries of the fluid pulse, speeding penetration of the wetting front and reducing the rate of drying. This leads to agreement between the analytical and numerical solutions for typical field and experimental conditions. The analytical solution is further incorporated into a stochastic column model of flow and transport to compute mean solute concentration in a heterogeneous field. An unusual phenomenon of plume contraction is observed at long times of solute propagation during the drying stage. The mean concentration profiles match those of the Monte-Carlo simulations for capillary length scales typical of sandy soils.  相似文献   

16.
The spreading of concentration fronts in dynamic column experiments conducted with a porous, aggregated soil is analyzed by means of a previously documented transport model (DFPSDM) that accounts for longitudinal dispersion, external mass transfer in the boundary layer surrounding the aggregate particles, and diffusion in the intra-aggregate pores. The data are drawn from a previous report on the transport of tritiated water, chloride, and calcium ion in a column filled with Ione soil having an average aggregate particle diameter of 0.34 cm, at pore water velocities from 3 to 143 cm/h. The parameters for dispersion, external mass transfer, and internal diffusion were predicted for the experimental conditions by means of generalized correlations, independent of the column data. The predicted degree of solute front-spreading agreed well with the experimental observations. Consistent with the aggregate porosity of 45%, the tortuosity factor for internal pore diffusion was approximately equal to 2. Quantitative criteria for the spreading influence of the three mechanisms are evaluated with respect to the column data. Hydrodynamic dispersion is thought to have governed the front shape in the experiments at low velocity, and internal pore diffusion is believed to have dominated at high velocity; the external mass transfer resistance played a minor role under all conditions. A transport model such as DFPSDM is useful for interpreting column data with regard to the mechanisms controlling concentration front dynamics, but care must be exercised to avoid confounding the effects of the relevant processes.  相似文献   

17.
Column experiments and numerical simulation were conducted to test the hypothesis that iron material having a high corrosion rate is not beneficial for the long-term performance of iron permeable reactive barriers (PRBs) because of faster passivation of iron and greater porosity loss close to the influent face of the PRBs. Four iron materials (Connelly, Gotthart-Maier, Peerless, and ISPAT) were used for the column experiments, and the changes in reactivity toward cis-dichloroethene (cis-DCE) degradation in the presence of dissolved CaCO3 were evaluated. The experimental results showed that the difference in distribution of the accumulated precipitates, resulting from differences in iron corrosion rate, caused a difference in the migration rate of the cis-DCE profiles and a significant difference in the pattern of passivation, indicating a faster passivation in the region close to the influent end for the material having a higher corrosion rate. For the numerical simulation, the accumulation of secondary minerals and reactivity loss of iron were coupled using an empirically-derived relationship that was incorporated into a multi-component reactive transport model. The simulation results provided a reasonable representation of the evolution of iron reactivity toward cis-DCE treatment and the changes in geochemical conditions for each material, consistent with the observed data. The simulations for long-term performance were also conducted to further test the hypothesis and predict the differences in performance over a period of 40 years under typical groundwater conditions. The predictions showed that the cases of higher iron corrosion rates had earlier cis-DCE breakthrough and more reduction in porosity starting from near the influent face, due to more accumulation of carbonate minerals in that region. Therefore, both the experimental and simulation results appear to support the hypothesis and suggest that reactivity changes of iron materials resulting from evolution of geochemical conditions should be considered in the design of iron PRBs.  相似文献   

18.

Introduction  

Through leaching experiments and simulated rainfall experiments, characteristics of vertical leaching of exogenous rare earth elements (REEs) and phosphorus (P) and their losses with surface runoff during simulated rainfall in different types of soils (terra nera soil, cinnamon soil, red soil, loess soil, and purple soil) were investigated.  相似文献   

19.
为了研究不同燃烧条件对燃煤中含硫颗粒物生成的影响,利用数值分析方法模拟炉膛煤燃烧。通过改变燃烧环境温度、进口氧气所占总气体摩尔比,分析得到的碳烟(soot)颗粒、SO2和CO2等主要物质浓度场。模拟结果能够很好地反映炉膛内各物质生成趋势和历程。生成的碳烟颗粒中富集煤中一部分硫元素,燃烧后期未被氧化的碳烟颗粒是燃煤烟气含硫颗粒物的一个重要来源。进口O2摩尔比从0.1~0.5时碳烟颗粒迅速被氧化,出口处产生含硫碳烟颗粒物减少。在1 200~1 600 K范围内,温度增高不利于碳烟颗粒的生成,来源于碳烟颗粒的含硫颗粒物也就逐渐减少。  相似文献   

20.
Numerical simulation of steam injection into a water-saturated porous medium may be hindered by unphysical behavior causing the model to slow down. We show how spurious water flow may arise on the boundary between a steam zone and a saturated zone, giving rise to dramatic pressure drops. This is caused by the discretization of the temperature gradient coupled with the direct relation between pressure and temperature in the steam zone. The problem may be a severe limitation to numerical modeling. A solution is presented where the spurious water flow is blocked and this widely enhances the performance of the model. This new method is applied to a previously reported example exhibiting numerical problems. Furthermore, it is applied to the simulation of 2-D sandbox experiments where LNAPL is remediated from a smearing zone by steam injection. These experiments would have been difficult to analyze numerically without the adjustment to prevent spurious flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号